All news

New theory could lead to new generation of energy friendly optoelectronics

22/08/2016


Researchers at Queen’s University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics, leading to less heat generation and power consumption in electronic devices which source, detect, and control light.

Speaking about the research, which enables scientists and engineers to quantify how transparent a 2D material is to an electrostatic field, Dr Elton Santos from the Atomistic Simulation Research Centre at Queen’s, said: “In our paper we have developed a theoretical framework that predicts and quantifies the degree of ‘transparency’ up to the limit of one-atom-thick, 2D materials, to an electrostatic field.

“Imagine we can change the transparency of a material just using an electric bias, e.g. get darker or brighter at will. What kind of implications would this have, for instance, in mobile phone technologies? This was the first question we asked ourselves. We realised that this would allow the microscopic control over the distribution of charged carriers in a bulk semiconductor (e.g. traditional Si microchips) in a nonlinear manner. This will help physicists and device engineers to design better quantum capacitors, an array of subatomic power storage components capable to keep high energy densities, for instance, in batteries, and vertical transistors, leading to next-generation optoelectronics with lower power consumption and dissipation of heat (cold devices), and better performance. In other words, smarter smart phones.”

Explaining how the theory could have important implications for future work in the area, Dr Santos added:Our current model simply considers an interface formed between a layer of 2D material and a bulk semiconductor. In principle, our approach can be readily extended to a stack of multiple 2D materials, or namely, van der Waals heterostructures recently fabricated. This will allow us to design and predict the behaviour of these cutting-edge devices in prior to actual fabrication, which will significantly facilitate developments for a variety of applications. We will have an in silico search for the right combination of different 2D crystals while reducing the need for expensive lab work and test trials.”

Further information on the Atomistic Simulation Research Centre at Queen’s is available online at http://titus.phy.qub.ac.uk/

Media inquiries to Michelle Cassidy/Anne-Marie Clarke, Queen’s Communications Office. Tel: +44 (0)28 90 97 5310 or email comms.officer@qub.ac.uk

More news and features

Social Charter 2

Society

Queen's University Belfast Launches New Social Charter Initiative

17/11/2017 - Queen’s University becomes one of the first universities in UK and Ireland to launch a ‘Social Charter’, a formal initiative reflecting the breadth and depth of the University’s local and global impact.

Technology

Queen’s University researcher wins prestigious 2017 Newton Prize

15/11/2017 - A researcher at Queen’s University Belfast has been awarded the 2017 Newton Prize in Vietnam for his work designing a wireless communications system which can withstand natural disasters such as an earthquake, tsunami or hurricane.