detail

  • detail

BSc Chemistry

Academic Year 2017/18

A programme specification is required for any programme on which a student may be registered. All programmes of the University are subject to the University's Quality Assurance and Enhancement processes as set out in the DASA Policies and Procedures Manual.

Programme Title

BSc Chemistry

Final Award
(exit route if applicable for Postgraduate Taught Programmes)

Bachelor of Science

Programme Code

CHM-BSC-S

UCAS Code

F100

JACS Code

F100 (DESCR) 100

Criteria for Admissions

A-level: BBB including Chemistry and a second Science subject + GCSE Mathematics grade C.
Irish Leaving Certificate (Higher Level): B2B2B2B2CC/B2B2B2B2B2 including Higher Level grade B2 in Chemistry and a second Science subject + if not offered at Higher Level then Ordinary Level grade C in Mathematics.

ATAS Clearance Required

No

Health Check Required

No

Portfolio Required

Interview Required

Mode of Study

Full Time

Type of Programme

Single Honours

Length of Programme

3 Academic Year(s)

Total Credits for Programme

360

Exit Awards available

INSTITUTE INFORMATION

Awarding Institution/Body

Queen's University Belfast

Teaching Institution

Queen's University Belfast

School/Department

Chemistry & Chemical Engineering

Framework for Higher Education Qualification Level 
http://www.qaa.ac.uk/publications/information-and-guidance

Level 6

QAA Benchmark Group
http://www.qaa.ac.uk/assuring-standards-and-quality/the-quality-code/subject-benchmark-statements

Chemistry

Accreditations (PSRB)

Royal Society of Chemistry

Date of most recent Accreditation Visit 14-04-16

External Examiner Name:

External Examiner Institution/Organisation

Professor Paul Pringle

Bristol University

Professor Karen Wilson

Aston University

Professor Rick Cosstick

University of Liverpool

REGULATION INFORMATION

Does the Programme have any approved exemptions from the University General Regulations
(Please see General Regulations)

Programme Specific Regulations

Students with a weighted average mark of >55% at the end of Stage 2 will be offered the opportunity to transfer to the MSci in Chemistry programme.

Weightings: Stage 1: 10%; Stage 2: 30%; Stage 3: 60%

Students with protected characteristics

Are students subject to Fitness to Practise Regulations

(Please see General Regulations)

No

EDUCATIONAL AIMS OF PROGRAMME

Understand the core principles of chemistry

Progress directly to graduate level employment in the chemical industry and non-chemistry related industries.

LEARNING OUTCOMES

Learning Outcomes: Cognitive Skills

On the completion of this course successful students will be able to:

Solve previously 'unseen' scientific problems using a range of analytical and deductive techniques

Teaching/Learning Methods and Strategies

Lectures and tutorials; class tests and problem solving sessions; structured group and independent laboratory classes; guided independent study. Unseen problems are introduced with tutorial and post-laboratory questions in all topics at Stages 1 and 2 and increase in complexity into level 3 leading to the design of experiments and data acquisition to solve research questions

Methods of Assessment

Written examinations; project or extended experimental work dissertations; oral and poster presentations; experimental reports;

Develop and use reflective practices to provide practical solutions to problems by experimentation

Teaching/Learning Methods and Strategies

Lectures and tutorials; structured group and independent laboratory classes; research project or extended experimental work; group problem solving exercises; guided independent study. Reflective practices are developed through feedback from experimental reports, tutorial work and formative/summative class tests. By Stage 3, students are routinely applying reflective experimental design principles to their research project or extended practical programmes

Methods of Assessment

Written examinations; group and individual dissertations; oral and poster presentations; experimental reports

Critically review and reflect upon their work

Teaching/Learning Methods and Strategies

Structured group and independent laboratory classes; research project or extended experimental work; group problem solving exercises. The same principles of developing these critical analysis and review techniques as the previous Outcome apply here

Methods of Assessment

Written examinations; group and individual dissertations; oral and poster presentations; experimental reports

Make value judgments on information in the public domain

Teaching/Learning Methods and Strategies

Essays; literature searching and research project or extended experimental work dissertation. Retrieval of subject-specific material from primary literature and public domain sources are developed through essays and particularly through the group problem solving exercises which rely on critical analysis of published material

Methods of Assessment

Group and individual dissertations; oral and poster presentations.

Learning Outcomes: Transferable Skills

On the completion of this course successful students will be able to:

Solve previously 'unseen' scientific problems using a range of analytical and deductive techniques

Teaching/Learning Methods and Strategies

Lectures and tutorials; class tests and problem solving sessions; structured group and independent laboratory classes; guided independent study. Unseen problems are introduced with tutorial and post-laboratory questions in all topics at Stages 1 and 2 and increase in complexity into level 3 leading to the design of experiments and data acquisition to solve research questions

Methods of Assessment

Written examinations; project or extended experimental work dissertations; oral and poster presentations; experimental reports;

Develop and use reflective practices to provide practical solutions to problems by experimentation

Teaching/Learning Methods and Strategies

Lectures and tutorials; structured group and independent laboratory classes; research project or extended experimental work; group problem solving exercises; guided independent study. Reflective practices are developed through feedback from experimental reports, tutorial work and formative/summative class tests. By Stage 3, students are routinely applying reflective experimental design principles to their research project or extended practical programmes

Methods of Assessment

Written examinations; group and individual dissertations; oral and poster presentations; experimental reports

Critically review and reflect upon their work

Teaching/Learning Methods and Strategies

Structured group and independent laboratory classes; research project or extended experimental work; group problem solving exercises. The same principles of developing these critical analysis and review techniques as the previous Outcome apply here

Methods of Assessment

Written examinations; group and individual dissertations; oral and poster presentations; experimental reports

Make value judgments on information in the public domain

Teaching/Learning Methods and Strategies

Essays; literature searching and research project or extended experimental work dissertation. Retrieval of subject-specific material from primary literature and public domain sources are developed through essays and particularly through the group problem solving exercises which rely on critical analysis of published material

Methods of Assessment

Group and individual dissertations; oral and poster presentations.

Solve previously 'unseen' scientific problems using a range of analytical and deductive techniques

Teaching/Learning Methods and Strategies

Lectures and tutorials; class tests and problem solving sessions; structured group and independent laboratory classes; guided independent study. Unseen problems are introduced with tutorial and post-laboratory questions in all topics at Stages 1 and 2 and increase in complexity into level 3 leading to the design of experiments and data acquisition to solve research questions

Methods of Assessment

Written examinations; project or extended experimental work dissertations; oral and poster presentations; experimental reports;

Written examinations; project or extended experimental work dissertations; oral and poster presentations; experimental reports;

Teaching/Learning Methods and Strategies

Lectures and tutorials; structured group and independent laboratory classes; research project or extended experimental work; group problem solving exercises; guided independent study. Reflective practices are developed through feedback from experimental reports, tutorial work and formative/summative class tests. By Stage 3, students are routinely applying reflective experimental design principles to their research project or extended practical programmes

Methods of Assessment

Written examinations; group and individual dissertations; oral and poster presentations; experimental reports

Learning Outcomes: Knowledge & Understanding

On the completion of this course successful students will be able to:

Read, understand and assimilate new information and subsume acquired knowledge into a concise manner and within various settings

Teaching/Learning Methods and Strategies

Lectures and tutorials; structured group and independent laboratory classes; research project or extended experimental work; essays and dissertations. The ability to extract, process, understand and critically analyse published material is a core key skill in this degree programme and the techniques are embedded into the course from Stage 1 to 3 using the methods listed above

Methods of Assessment

Written examinations; class tests; project or extended experimental work dissertations; oral and poster presentations; experimental reports;

Apply developed generic and subject specific IT skills

Teaching/Learning Methods and Strategies

Lectures and tutorial; IT and computer skills workshops; experimental reports; research project or extended experimental work; essays and dissertations; guided independent study. Basic IT skills for the production of professional reports using subject specific software, such as chemical structure drawing and data analysis, are introduced through workshops and computer-based classes and then developed through experimental reports and essays and dissertations

Methods of Assessment

Written examinations; class tests; project or extended experimental work dissertations; computer-based workshop or online assessment; experimental reports;

Be proficient in database and literature searching techniques

Teaching/Learning Methods and Strategies

Essays; literature searching and research project or extended experimental work dissertation; group problem solving exercises; guided independent study. Awareness of the body of published scientific work and the tools to interrogate and access that information begins in Stage 1 and is developed to the point where students use the available search techniques routinely for their research project or extended practical work in Stage 3

Methods of Assessment

Project or extended experimental work dissertations; group and individual dissertations; oral and poster presentations

Learning Outcomes: Subject Specific

On the completion of this course successful students will be able to:

Demonstrate a conceptual understanding of the fundamental aspects of organic, inorganic and physical chemistry

Teaching/Learning Methods and Strategies

Lectures and tutorials; structured group and independent laboratory classes; research project or extended experimental work; essays and dissertations; guided independent study; These subject-specific skills are developed from fundamental concepts in Stages 1 and 2 to the application of the concepts in industrially and commercially relevant contexts in Stage 3 where a degree of specialisation through the specific pathway and the Options module is available

Methods of Assessment

Written examinations; class tests; project or extended experimental work dissertations; experimental reports

Understand the characteristic chemistry and properties of the elements and group relationships and trends within the periodic table

Teaching/Learning Methods and Strategies

Lectures and tutorials; structured group and independent laboratory classes; essays and dissertations; guided independent study. See previous Learning Outcome for details of strategy

Methods of Assessment

Written examinations; class tests; project or extended experimental work dissertations; experimental reports

Demonstrate a knowledge of chemical bonding, shape and structure

Teaching/Learning Methods and Strategies

Lectures and tutorials; structured group and independent laboratory classes; essays and dissertations; independent guided study. See previous Learning Outcome for details of strategy

Methods of Assessment

Written examinations; class tests; project or extended experimental work dissertations; experimental reports

Understand the chemistry of functional groups and major synthetic pathways in organic chemistry.

Teaching/Learning Methods and Strategies

Lectures and tutorials; structured group and independent laboratory classes; essays and dissertations; guided independent study. See previous Learning Outcome for details of strategy

Methods of Assessment

Written examinations; class tests; project or extended experimental work dissertations; experimental reports

Understand the principles of thermodynamics and kinetics, including catalysis and the mechanistic interpretation of chemical reactions

Teaching/Learning Methods and Strategies

Lectures and tutorials; structured group and independent laboratory classes; essays and dissertations; guided independent study. See previous Learning Outcome for details of strategy

Methods of Assessment

Written examinations; class tests; project or extended experimental work dissertations; experimental reports

Demonstrate safe and proficient practical laboratory chemistry skills

Teaching/Learning Methods and Strategies

Structured group and independent laboratory classes; research project. Chemistry is essentially an experimental, laboratory-based subject and experimental work forms at least 25% of the degree in terms of teaching and assessment. Developing the skills to handle potentially dangerous materials and processes is central to all laboratory-based activities

Methods of Assessment

Project or extended experimental work dissertations; group and individual dissertations; oral and poster presentations; experimental reports

Be proficient in a range of analytical instrumentation

Teaching/Learning Methods and Strategies

Structured group and independent laboratory classes; research project or extended experimental work; group problem solving exercises.

Methods of Assessment

Project or extended experimental work dissertations; group and individual dissertations; oral and poster presentations; experimental reports

Implement sustainable industrial practices using Green Chemistry principles

Teaching/Learning Methods and Strategies

Lectures and tutorials; group problem solving exercises; guided independent study. Sustainability and Green Chemistry are delivered through the group process design exercise which uses experiential problem solving and scientific literature critical analysis as a more effective method to teach these concepts than the traditional lecture model of delivery

Methods of Assessment

Project or extended experimental work dissertations; group and individual dissertations;

MODULE INFORMATION

Programme Requirements

Module Title

Module Code

Level/ stage

Credits

Availability

Duration

Pre-requisite

 

Assessment

 

 

 

 

S1

S2

 

 

Core

Option

Coursework %

Practical %

Examination %

Structural Chemistry

CHM2002

2

20

YES

24 weeks

N

YES

100%

0%

0%

Organic Chemistry 2

CHM2003

2

20

YES

24 weeks

N

YES

10%

30%

60%

Inorganic Chemistry 2

CHM2004

2

20

YES

24 weeks

N

YES

10%

30%

60%

Inorganic Chemistry 3

CHM3001

3

20

24 weeks

N

YES

20%

0%

80%

Physical Chemistry 3

CHM3003

3

20

YES

24 weeks

N

YES

30%

0%

70%

Advanced Chemistry Options

CHM3005

3

20

YES

24 weeks

N

YES

0%

0%

100%

Introductory Mathematics for Chemists and Engineers

CHE1006

1

10

YES

12 weeks

N

YES

100%

0%

0%

Industrial and Green Chemistry

CHM2006

2

20

YES

24 weeks

N

YES

100%

0%

0%

Quantum Theory, Spectroscopy and Bonding

CHM2005

2

20

YES

24 weeks

N

YES

20%

20%

60%

Physical Chemistry 2

CHM2001

2

20

YES

24 weeks

N

YES

20%

20%

60%

Organic Chemistry 3: Structure and Reactivity

CHM3002

3

20

24 weeks

N

YES

0%

0%

100%

Chemistry Research Project

CHM3008

3

40

24 weeks

N

YES

80%

20%

0%

Advanced Practical Work in Chemistry

CHM3015

3

40

24 weeks

N

YES

80%

20%

0%

Skills for Physical Chemistry

CHM1015

1

10

YES

12 weeks

N

YES

100%

0%

0%

Organic Chemistry Level 1

CHM1101

1

30

24 weeks

N

YES

35%

15%

50%

Inorganic Chemistry Level 1

CHM1102

1

30

24 weeks

N

YES

15%

35%

50%

Introduction to Chemical Products and Processes

CHE1101

1

20

YES

12 weeks

N

YES

100%

0%

0%

Physical Theory

CCE1102

1

30

24 weeks

N

YES

20%

25%

55%

Notes

CHE1006 for students with A Level Maths or CHM1015 for those without A Level Maths