detail

Certificate (PC) Advanced Aerospace Engineering

Academic Year 2016/17

A programme specification is required for any programme on which a student may be registered. All programmes of the University are subject to the University's Quality Assurance and Enhancement processes as set out in the DASA Policies and Procedures Manual.

Programme Title

Certificate (PC) Advanced Aerospace Engineering

Final Award
(exit route if applicable for Postgraduate Taught Programmes)

Postgraduate Certificate

Programme Code

AER-PC-EN

UCAS Code

JACS Code

H400 (DESCR) 100

Criteria for Admissions

General entry requirements are set by the University (http://www.qub.ac.uk/ado ).

There is no direct entry to the Postgraduate Certificate in Advanced Aerospace Engineering. This award is only available to students who exit before completion of the MSc (T) Advanced Aerospace Engineering or Dip (PD) Advanced Aerospace Engineering programmes , but satisfy the conditions of a Postgraduate Certificate.

ATAS Clearance Required

No

Health Check Required

No

Portfolio Required

Interview Required

Mode of Study

Full Time

Type of Programme

Postgraduate

Length of Programme

1 Academic Year(s)

Total Credits for Programme

60

Exit Awards available

INSTITUTE INFORMATION

Awarding Institution/Body

Queen's University Belfast

Teaching Institution

Queen's University Belfast

School/Department

Mechanical & Aerospace Engineering

Framework for Higher Education Qualification Level 
http://www.qaa.ac.uk/publications/information-and-guidance

Level 7

QAA Benchmark Group
http://www.qaa.ac.uk/assuring-standards-and-quality/the-quality-code/subject-benchmark-statements

Engineering (2015)

Accreditations (PSRB)

Date of most recent Accreditation Visit

External Examiner Name:

External Examiner Institution/Organisation

Dr Helen Lockett

Department of Aerospace Engineering, School of Engineering, Cranfield University

REGULATION INFORMATION

Does the Programme have any approved exemptions from the University General Regulations
(Please see General Regulations)

N/A

Programme Specific Regulations

N/A

Students with protected characteristics

N/A

Are students subject to Fitness to Practise Regulations

(Please see General Regulations)

No

EDUCATIONAL AIMS OF PROGRAMME

The overall aim of the programme is to offer a high quality, supportive teaching and learning environment that provides graduates with:

Engineering education and training which is accredited by the Royal Aeronautical Society.

Intellectual, practical and professional skills in the critical analysis, evaluation, design and management of advanced engineering projects and organisations.

Skills, tools and techniques to enable graduates of the programme to embark or progress on a high-level industrial career in advanced engineering and management. The course also aims to provide in-depth knowledge in specific subject areas to those graduates who are considering a career in research, either in industry or academia.

Competences and expertise in the application of advanced computer-aided design, analysis and management techniques.

Transferable skills which relate to literacy, numeracy, ICT, team-work, presentations and interactions to prepare graduates for more general employment.

LEARNING OUTCOMES

Learning Outcomes: Cognitive Skills

On the completion of this course successful students will be able to:

Draw rational conclusions from experimental data.

Teaching/Learning Methods and Strategies

The development of cognitive skills is promoted through project work and assignments.

Methods of Assessment

Assessment rewards instances of creative and critical thinking and logical approaches to problem solving and decision making.

Identify and define an engineering problem that may be unfamiliar and generate practical as well as innovative solutions.

Teaching/Learning Methods and Strategies

The development of cognitive skills is promoted through project work and assignments.

Methods of Assessment

Assessment rewards instances of creative and critical thinking and logical approaches to problem solving and decision making.

Apply appropriate methods to model such solutions and assess the limitations of the method.

Teaching/Learning Methods and Strategies

The development of cognitive skills is promoted through project work and assignments.

Methods of Assessment

Assessment rewards instances of creative and critical thinking and logical approaches to problem solving and decision making.

Evaluate the technical capabilities of modern engineering design and analysis tools.

Teaching/Learning Methods and Strategies

The development of cognitive skills is promoted through project work and assignments.

Methods of Assessment

Assessment rewards instances of creative and critical thinking and logical approaches to problem solving and decision making.

Make informed judgements on best-in-class practice in engineering design and manufacture.

Teaching/Learning Methods and Strategies

The development of cognitive skills is promoted through project work and assignments.

Methods of Assessment

Assessment rewards instances of creative and critical thinking and logical approaches to problem solving and decision making.

Make general evaluations of commercial risk.

Teaching/Learning Methods and Strategies

The development of cognitive skills is promoted through project work and assignments

Methods of Assessment

Assessment rewards instances of creative and critical thinking and logical approaches to problem solving and decision making.

Learning Outcomes: Transferable Skills

On the completion of this course successful students will be able to:

Use a wide range of enhanced personal and inter-personal team-working skills.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, as well as individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

Apply ICT skills in the use of modern general purpose computer software.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, as well as individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

Apply ICT skills in the use of specialised computer-aided design and analysis systems such as statistical analysis, finite element analysis and computational fluid dynamics.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, as well as individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

Exercise independent judgment, autonomy and personal responsibility in addressing potentially complex situations.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, as well as individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

Learning Outcomes: Knowledge & Understanding

On the completion of this course successful students will be able to:

Identify and employ appropriate engineering science and advanced technical software for aerospace design, simulation and manufacture.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

Develop and critically evaluate the results from engineering models and simulations.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

Manage the evaluation, design and management of advanced Aerospace engineering projects and organisations.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

Analyse, evaluate and create strategies for efficient engineering manufacture.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

Learning Outcomes: Subject Specific

On the completion of this course successful students will be able to:

Integrate statistical methods and quantitative data analysis to find solutions to engineering problems.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

Perform a basic strategic operational analysis of an engineering business.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

Use state-of-the-art commercial software tools for digital design, simulation and manufacturing.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

Identify the technical capabilities and limitations of advanced software tools.

Teaching/Learning Methods and Strategies

Formal lectures are presented, but students also acquire knowledge and understanding experientially in assignments, individual and group project work.

Methods of Assessment

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups, where students are expected to acquire knowledge and develop their own understanding as part of their assigned tasks.

MODULE INFORMATION

Programme Requirements

Module Title

Module Code

Level/ stage

Credits

Availability

Duration

Pre-requisite

 

Assessment

 

 

 

 

S1

S2

 

 

Core

Option

Coursework %

Practical %

Examination %

Operations Management in the New Economy

MGT9029

7

20

YES

12 weeks

N

YES

50%

0%

50%

Finite Element Analysis

MEE7002

7

10

YES

12 weeks

N

YES

40%

0%

60%

Compressible Flow & Turbomachinery

MEE7001

7

10

YES

12 weeks

N

YES

0%

0%

100%

Computational Fluid Dynamics

MEE7003

7

10

YES

12 weeks

N

YES

0%

50%

50%

Aerodynamics

MEE7008

7

10

YES

12 weeks

N

YES

40%

0%

60%

Composite Structures

MEE7009

7

20

YES

12 weeks

N

YES

65%

0%

35%

Fracture Mechanics

MEE7011

7

10

YES

12 weeks

N

YES

20%

0%

80%

Sustainable Transportation Systems

MEE7013

7

10

YES

12 weeks

N

YES

0%

0%

100%

Research Methods

MEE7014

7

10

YES

12 weeks

N

YES

60%

40%

0%

Internal Combustion Engines

MEE7021

7

10

YES

12 weeks

N

YES

20%

0%

80%

Turbomachinery

MEE7022

7

10

YES

12 weeks

N

YES

0%

0%

100%

Digital Manufacturing

AER7010

7

10

YES

12 weeks

N

YES

100%

0%

0%

Aviation Maintenance Management

AER7011

7

10

YES

12 weeks

N

YES

30%

0%

70%

Manufacturing Automation & Robotics

MEE7025

7

10

YES

12 weeks

N

YES

20%

0%

80%

Lean Manufacture

MEE7026

7

10

YES

12 weeks

N

YES

50%

0%

50%

Notes