Sheaves of \(C^* \)-algebras

Pere Ara\(^*\)\(^1\) and Martín Mathieu\(^**)\(^2\)

1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
2 Department of Pure Mathematics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland

Received 17 April 2009, accepted 20 July 2009
Published online 29 December 2009

Key words Sheaves, bundles of \(C^* \)-algebras, local multiplier algebra, injective envelope, Hausdorff primitive ideal space

MSC (2000) Primary: 46L05; Secondary: 18F20, 46M15, 46M20

Dedicated to the memory of Erhard Schmidt

We develop the basics of a theory of sheaves of \(C^* \)-algebras and, in particular, compare it to the existing theory of \(C^* \)-bundles. The details of two fundamental examples, the local multiplier sheaf and the injective envelope sheaf, are discussed.

\(^*\) Dedicated to the memory of Erhard Schmidt

\(^{\dagger}\) Corresponding author: e-mail: m.m@qub.ac.uk, Phone: +44 28 90976008, Fax: +44 28 90976060

1 Introduction

A commutative \(C^* \)-algebra can be described as the algebra of bounded continuous sections, vanishing at infinity, of a bundle of one-dimensional \(C^* \)-algebras over its structure space. There are numerous extensions of this approach in the non-commutative setting, see, e.g., [8], [20], [4]. This theory of \(C^* \)-bundles or fields of \(C^* \)-algebras works best over a (locally compact) Hausdorff base space. In fact, in the non-Hausdorff situation, points become less significant and instead of fibres one should rather think of stalks of \(C^* \)-algebraic sheaves. There appears to be no systematic account on sheaves of \(C^* \)-algebras; thus, part of the objective of this paper is to provide the basic theory in a fairly concise manner.

The open subsets of the primitive spectrum \(\text{Prim}(A) \) of a \(C^* \)-algebra \(A \) correspond to closed ideals of \(A \). However, instead of associating the ideal \(A(U) \) to an open subset \(U \subseteq \text{Prim}(A) \) we propose rather to use the multiplier algebra \(M(A(U)) \). This is certainly justified in the separable case, since, by a result of Larry Brown [6], every isomorphism between the multiplier algebras of two separable \(C^* \)-algebras restricts to an isomorphism between the \(C^* \)-algebras themselves. In the commutative case we therefore associate to every open subset \(U \subseteq X \), when \(A = C_0(X) \), the algebra \(C_0(U) \) of all bounded continuous complex-valued functions on \(U \) and, if \(V \subseteq U \) is another open subset, we have the restriction maps \(C_0(U) \rightarrow C_0(V) \). The stalks of this well-known sheaf of continuous functions on \(X \) are given by \(A_t = \lim \overline{C_0(U)} \), where \(U \) ranges over all open neighbourhoods of \(t \in X \). Denoting by \([f] \) the equivalence class of \(f \in C_0(U) \) in the \(C^* \)-direct limit, we find that \([f] \mapsto f(t) \) is an isomorphism and hence \(A_t \cong \mathbb{C} \). In contrast to the algebraic situation, we do not get any “germs” in this case: if \(f(s) = g(s) \) for two continuous functions \(f \) and \(g \) defined on a neighbourhood of \(t \), then \(\| [f] - [g] \| < \varepsilon \) for every \(\varepsilon > 0 \) and so \([f] = [g] \) in \(A_t \). In this way we recover the usual bundle of \(C^* \)-algebras.

The extension to the non-commutative setting also works with the canonical restriction mappings \(M(A(U)) \rightarrow M(A(V)) \), where \(V \subseteq U \subseteq \text{Prim}(A) \) are open subsets. The stalk at a primitive ideal \(t \in \text{Prim}(A) \) is given by \(A_t = \lim M(I) \), where \(I \) ranges over all closed ideals of \(A \) not contained in \(t \). For such \(I \), we have

\[
M(I) \longrightarrow M(I/t \cap I) \xrightarrow{\cong} M(I + t/t) \longrightarrow M_{\text{loc}}(A/t);
\]
here, $M_{\text{loc}}(B)$ denotes the local multiplier algebra of a C^*-algebra B, see [1]. Since the above maps are compatible with the restriction homomorphisms, we obtain a mapping

$$\varphi_t: A_t \longrightarrow M_{\text{loc}}(A/t)$$

which will be an isomorphism under favourable circumstances; see Corollary 6.7. The appearance of the local multiplier algebra in this setting is no accident; in fact, part of this study is motivated by trying to understand this construction in more depth using sheaf-theoretic methods, see below.

For any C^*-algebra A, $M_{\text{loc}}(A)$ can be realised as a continuous C^*-bundle over $\text{Glimm}(M_{\text{loc}}(A))$, the Glimm ideal space of $M_{\text{loc}}(A)$, with all fibres being prime C^*-algebras [1, Corollary 3.5.11]. If A is separable, then all fibres are even primitive [25, Theorem 3.5]. However, this description does not seem to reveal much of the structure of the local multiplier algebra. For instance, if A is commutative, say $A = C[0, 1]$, then $M_{\text{loc}}(A)$ is a commutative AW*-algebra and hence $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$ [1, Theorem 2.3.8]. In contrast to this, if $A = C[0, 1] \otimes K$, where K denotes the compact operators on separable Hilbert space, then $M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A)$; see [3], [5]. But if A is a unital separable C^*-algebra with Hausdorff primitive ideal space then, again, $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$ [25, Theorem 2.7]. A different type of C^*-algebras A such that $M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A)$ is exhibited in [2]. It is hoped that a sheaf-theoretic description of $M_{\text{loc}}(A)$, see Section 7, will shed some light on this strange behaviour.

Of course, sheaves of C^*-algebras (and Banach algebras and Banach spaces) have been looked at before, notably by Dauns, Hofmann and co-authors ([14], [15], [16], e.g.). These studies, however, tend to take the viewpoint of representation of a C^*-algebra by continuous sections of a bundle. Indeed, in [15], an equivalence between certain (pre-)sheaves and bundles is established for completely regular base spaces. Our main new examples—the multiplier sheaf and the injective envelope sheaf, see Section 3—are not generated from an (upper semicontinuous) C^*-bundle and thus work better over general, possibly non-Hausdorff base spaces, in particular the primitive ideal space of an arbitrary C^*-algebra. We shall discuss the relations with the more traditional bundle approach in Section 6. Another difference of the present work to the existing literature is that we are not striving for a framework that covers very general topological-algebraic structures but focus on the situation of C^*-algebras, with the advantage of having more structure available.

After we compile the necessary notation in Section 2, the concepts of a presheaf and a sheaf of C^*-algebras are introduced in Section 3. Section 4 contains a brief recollection of the necessary background on $C_0(X)$-algebras and C^*-algebras over a topological space. We discuss a concept of an upper semicontinuous C^*-bundle over a not necessarily Hausdorff base space in Section 5. Starting from such a bundle (A, π, X) one obtains naturally a sheaf of C^*-algebras by taking the C^*-algebras $\Gamma_{\delta}(U, A)$ of bounded continuous sections on open subsets $U \subseteq X$ (Theorem 5.3). More interestingly, in Theorem 5.6, we associate to every presheaf of C^*-algebras over X a canonical upper semicontinuous C^*-bundle using the stalks at each $t \in X$. These procedures are not always inverses of each other but in some situations they are. This is in particular the case for sheaves of Banach modules over a sheaf of commutative C^*-algebras (Definition 5.8) under various additional hypotheses on the base space X (Propositions 5.10 and 5.12 and Corollary 6.11).

Starting with the multiplier sheaf of a C^*-algebra A over a topological space X we obtain in Section 6 certain C^*-algebras A_t, $t \in X$, which reduce to $M_{\text{loc}}(A/t)$, in the case $X = \text{Prim}(A)$. We investigate the relations between these and the fibres A_t of the bundle introduced above and characterise when A_t and $M_{\text{loc}}(A/t)$ are isomorphic in the case of a separable C^*-algebra A (Corollary 6.7). Separated points in the primitive ideal space play an important role in this discussion.

For a commutative C^*-algebra A, both $M_{\text{loc}}(A)$ and the injective envelope $I(A)$ coincide with the direct limit $\text{alg lim}_{T \in \mathcal{T}} C_b(T)$, where \mathcal{T} denotes the downwards directed set of dense G_d subsets of $\text{Prim}(A)$. Even slight extensions into the non-commutative world—such as tensoring with K—destroy such a description; compare [3, Section 6]. By using a derived sheaf $\mathcal{D}(A, \pi, X)$ built from the canonically associated C^*-bundle (A, π, X) of a sheaf discussed before, we obtain, in Theorem 7.6, the analogous representation $M_{\text{loc}}(A) = \text{alg lim}_{T \in \mathcal{T}} \Gamma_b(T, A)$ for an arbitrary C^*-algebra A. A strong rigidity property of the injective envelope sheaf is established in Theorem 7.7 stating that it coincides with its derived sheaf, yielding the like formula $I(A) = \text{alg lim}_{T \in \mathcal{T}} \Gamma_b(T, 1)$.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.mm-journal.com
2 Notation

For the reader’s benefit, we compile here a list of our notation which we shall use as consistently as possible in the following.

By A, B, \ldots we denote (not necessarily unital) C^*-algebras and by I, J, \ldots (two-sided) ideals of them. Since we may have an opportunity to talk about non-closed ideals, we shall always specify explicitly when an ideal (or any other subspace) is closed. The multiplier algebra of a C^*-algebra A is designated by $M(A)$, and $ZM(A)$ is its centre. The local multiplier algebra of A, $M_{loc}(A)$, is defined as $M_{loc}(A) = \lim_{\leftarrow} M(I)$, where I runs through the (downwards directed) family of closed essential ideals of A. For more details on $M_{loc}(A)$, we refer to [1].

Suppose $\{A_\alpha\}$ is a directed system of C^*-algebras (suppressing the connecting *-homomorphisms); then $\lim_{\rightarrow} A_\alpha$ denotes their C^*-direct limit. The notation $\underline{\lim} A_\alpha$ is reserved for the uncompleted direct limit, that is, the direct limit in the category of complex *-algebras (which, on occasion, will turn out to be already complete). We point out that there is always a canonical *-homomorphism $\underline{\lim} A_\alpha \to \lim_{\rightarrow} A_\alpha$ but, if the connecting maps are not isometries, this may not be injective. The symbol $\prod_{\alpha} A_\alpha$, where $\{A_\alpha\}$ is a family of C^*-algebras, stands, of course, for all bounded families $(x_\alpha), x_\alpha \in A_\alpha$, and hence is a C^*-algebra.

Topological spaces are typically named X, Y, \ldots and U, V etc. are open subsets of them. For a topological space X, the lattice of all open subsets of X is considered as a category in the usual way (that is, there is an arrow from V to U if and only if $V \subseteq U$) and this category is denoted by O_X. In general, we shall use calligraphic fonts for categories such as C^* and C_1^* for the category of C^*-algebras with *-homomorphisms as the morphisms and for the subcategory of unital C^*-algebras with unital *-homomorphisms as the morphisms, respectively. Gothic letters such as \mathcal{A}, \mathcal{B} or \mathcal{D} will be reserved for sheaves and sans serif letters like A, B will denotes bundles.

For a C^*-algebra A, $\text{Prim}(A)$ denotes the primitive ideal space of A (equipped with the hull-kernel or Jacobson topology), and elements of $\text{Prim}(A)$ will typically be $t, t', \text{ etc.}$ (since we think of these primitive ideals as points in $\text{Prim}(A)$). For elements in C^*-algebras, we shall use a, b and sometimes x, y although the latter are more frequently used for points in a topological space. Sections of a bundle (of C^*-algebras) will be denoted by s, and maps between topological spaces typically go under the names φ or ψ.

3 Sheaves of C^*-algebras

In this section we introduce the concept of a sheaf of C^*-algebras and discuss some first examples.

Definition 3.1 Let X be a topological space. A presheaf of C^*-algebras is a contravariant functor $\mathcal{A}: O_X \to C^*$. A sheaf of C^*-algebras is a presheaf \mathcal{A} such that $\mathcal{A}(\emptyset) = 0$ and, for every open subset U of X and every open cover $U = \bigcup U_i$, the maps $\mathcal{A}(U) \to \mathcal{A}(U_i)$ are the limit of the diagrams $\mathcal{A}(U_i) \to \mathcal{A}(U_i \cap U_j)$ for all i, j.

The “limit of the diagrams” is to be understood in the categorical sense; see, e.g., [17, pp. 68–72]. We shall call the C^*-algebra $\mathcal{A}(U)$ the section algebra over $U \in O_X$ and shall denote by $s_{|V}, V \subseteq U$ open, the “restriction” of $s \in \mathcal{A}(U)$ to V, that is, the image of s in $\mathcal{A}(V)$ under the *-homomorphism $\mathcal{A}(U) \to \mathcal{A}(V)$. With this notation, the unique gluing property of a sheaf can be expressed as follows: for each bounded compatible family of sections $s_i \in \mathcal{A}(U_i)$, i.e., $s_{|U_i \cap U_j} = s_{|U_i \cap U_j}$ for all i, j, there is a unique section $s \in \mathcal{A}(U)$ such that $s_{|U_i} = s_i$ for all i. Note also that, in order to be compatible when working with sheaves in C_1^*, we understand here that $0 = \mathcal{A}(\emptyset)$ is a unital C^*-algebra.

The following is our primary example.

Example 3.2 Let A be a C^*-algebra. By the multiplier sheaf of A we understand the functor $M_A: O_{\text{Prim}(A)} \to C_1^*$ given by $M_A(U) = M(A(U))$, where $M(A(U))$ denotes the multiplier algebra of the closed ideal $A(U)$ of A associated to the open subset $U \subseteq \text{Prim}(A)$. The maps $M(A(U)) \to M(A(V))$, for $V \subseteq U$, are the restriction homomorphisms.

To show that this indeed defines a sheaf, we need a simple lemma.

Lemma 3.3 Let I_1 and I_2 be closed ideals in a C^*-algebra A. Suppose that $x_j \in M(I_j)$ satisfy $x_{1|I_1 \cap I_2} = x_{2|I_1 \cap I_2}$, $j = 1, 2$. Then, for $a \in I_1$ and $b \in I_2$ we have $(ax_1)b = a(x_2b)$.

Proof. Let (e_α) be an approximate identity for I_2. We have

$$(ax_1)b = \lim_\alpha (e_\alpha(a)x_1)b = \lim_\alpha ((e_\alpha a)x_1)b = \lim_\alpha ((e_\alpha a)x_2)b = \lim_\alpha e_\alpha(a(x_2b)) = a(x_2b).$$

\[\square \]
Proposition 3.4 The above functor \(\mathcal{M} \) defines a sheaf of \(C^* \)-algebras.

Proof. Since \(\mathcal{M} \) is clearly a presheaf, we need to check the coherence condition. Let \(U = \bigcup U_i \) be an open cover of the open subset \(U \subseteq \text{Prim}(A) \). Denote by \(\rho_{ij} : M(A(U_i)) \to M(A(U_i \cap U_j)) \) and \(\rho_i : M(A(U)) \to M(A(U_i)) \) the corresponding restriction maps. Set

\[
B = \left\{ (x_i) \in \prod_i M(A(U_i)) \mid \rho_{ij}(x_i) = \rho_{ij}(x_j) \text{ for all } i, j \right\}.
\]

Then \(B \) is the limit of the maps \(\{\rho_{ij}\} \) in the category \(C^*_1 \), and we have a \(* \)-homomorphism \(\rho : M(A(U)) \to B \) defined by \(\rho(x) = (\rho_i(x)) \) for every \(x \in M(A(U)) \). We need to show that \(\rho \) is an isomorphism.

Assume that \(\rho_i(x) = 0 \) for every \(i \). Observe that \(A(U) = \bigcup_i A(U_i) \). Since the restriction of \(x \) to \(A(U_i) \) is 0, it follows that \(xa_i = 0 \) for every \(a_i \in A(U_i) \). Therefore \(xa = 0 \) for all \(a \in A(U) \) and thus \(x = 0 \).

In order to verify that \(\rho \) is surjective, let \((x_i) \in B \). We show by induction on \(n \in \mathbb{N} \) that, for all indices \(i_1, \ldots, i_n \), there is a unique \(x_{i_1, \ldots, i_n} \in M(\bigcap_{k=1}^n A(U_{i_k})) \) such that \(x_{i_1, \ldots, i_n} = x_{i_k}a_{i_k} \) and \(a_{i_k}x_{i_1, \ldots, i_{k-1}} = a_{i_k}x_{i_{k-1}, \ldots, i_n} \) for each \(a_{i_k} \in A(U_{i_k}) \) and all \(k = 1, \ldots, n \). There is nothing to prove for \(n = 1 \). Assume that \(n > 1 \) and that the claim holds for families with less than \(n \) elements. Given \(i_1, \ldots, i_n \) we put \(y_1 = x_{i_1, \ldots, i_{n-1}} \), \(y_2 = x_{i_1, \ldots, i_n} \), \(J_1 = A(U_{i_1}) + \ldots + A(U_{i_{n-1}}) \) and \(J_2 = A(U_{i_n}) \). We are going to show that \(y_1a = y_2a \) for arbitrary \(a \in J_1 \cap J_2 \). Since the lattice of ideals of a \(C^* \)-algebra is distributive, we get

\[
J_1 \cap J_2 = (A(U_{i_1}) \cap A(U_{i_n})) + \ldots + (A(U_{i_{n-1}} \cap A(U_{i_n})),
\]

so that we can write \(a = a_1 + \ldots + a_{n-1} \) with \(a_k \in A(U_{i_k}) \cap A(U_{i_n}) \) for \(k = 1, \ldots, n-1 \). Thus

\[
y_1a = y_1a_1 + \ldots + y_1a_{n-1} = x_{i_1}a_1 + \ldots + x_{i_n}a_{n-1} = x_{i_1}a_1 + \ldots + x_{i_n}a_{n-1} = x_{i_1}a = y_2a,
\]

by induction hypothesis. Similarly, \(ay_1 = ay_2 \) for each \(a \in J_1 \cap J_2 \). We can therefore define a multiplier \(x_{i_1, \ldots, i_n} \) on \(J_1 + J_2 \) by the rule \(x_{i_1, \ldots, i_n}(b_1 + b_2) = y_1b_1 + y_2b_2 \), for \(b_1 \in J_1 \) and \(b_2 \in J_2 \), and similarly for right multiplication. By Lemma 3.3, this gives a well-defined multiplier:

\[
((a_1 + a_2)x_{i_1, \ldots, i_n})(b_1 + b_2) = (a_1y_1 + a_2y_2)(b_1 + b_2) = a_1(y_1b_1 + a_1(y_2b_2) + a_2(y_1b_1) + a_2(y_2b_2) = (a_1 + a_2)(x_{i_1, \ldots, i_n}(b_1 + b_2))
\]

for all \(a_1, b_1 \in J_1 \) and \(a_2, b_2 \in J_2 \).

So far we have shown that, for every finite set \(F \) of indices, the map

\[
M\left(\sum_{i \in F} A(U_i)\right) \to B_F = \{(x_i)_{i \in F} \mid \rho_{ij}(x_i) = \rho_{ij}(x_j) \text{ for all } i, j \in F\}
\]

is a \(* \)-isomorphism. If \((x_i) \in B \), we therefore get a well-defined multiplier \(x \) on the algebraic sum \(\sum_{i \in F} A(U_i) \). It remains to show that it is a bounded operator. If \(x = \sum_{i \in F} A(U_i) \), for a finite set \(F \) of indices, then, from the \(* \)-isomorphism above, we obtain \(\|x_F\| = \sup_{i \in F} \|x_i\| \leq \|\sum_{i \in F} x_i\| \), so that left (resp., right) multiplication by \(x \) gives a bounded operator on \(\sum_{i \in F} A(U_i) \). It follows that we can extend it to an element in \(M(A(U)) \), as desired.

This concludes the proof. \(\square \)

Remark 3.5 The algebra \(B \) appearing in the proof of Proposition 3.4 should not be confused with the inverse limit of \(C^* \)-algebras, or pro-\(C^* \)-algebra, discussed in [24]; the latter is not a \(C^* \)-algebra in general. The basic idea above is that, for a pair of closed ideals \(I \) and \(J \) in a \(C^* \)-algebra, \(M(I + J) \) is given by the pullback \(M(I) \otimes_{M(I+J)} M(J) \); compare also diagram (5.3) below. Suppose that \(\{I_\lambda \mid \lambda \in \Lambda\} \) is a family of closed ideals in a \(C^* \)-algebra \(A \) and the closed ideal \(K \) is given by \(K = \sum_\lambda I_\lambda \). For each finite set \(F \subseteq \Lambda \), we put

\[
B_F = \left\{ (x_\lambda) \in \prod_{\lambda \in F} M(I_\lambda) \mid (x_\lambda, x_\mu) \in M(I_\lambda + I_\mu) \text{ for all } \lambda, \mu \in F \right\}.
\]
see [23], in particular 3.11. Then \(M(K) = \lim_F B_F \), where \(F \) runs through the upwards directed set of finite subsets of \(\Lambda \).

Our second example is the injective envelope sheaf of a \(C^* \)-algebra.

Example 3.6 Let \(A \) be a \(C^* \)-algebra, and let \(I(A) \) denote the injective envelope of \(A \); see [3] or [11]. Recall that for every closed ideal \(I \) of \(A \) there is a unique central open projection \(p_I \) in \(I(A) \) such that \(p_I I(I) \) is the injective envelope of \(I \) [13, Lemma 1.1]. ('Open’ in this context means relative to the regular monotone completion of \(A \)). Define a presheaf \(\mathcal{J}_A \) over \(\text{Prim}(A) \) by assigning to each open subset \(U \) of \(\text{Prim}(A) \) the injective envelope \(p_U I(I) = I(A(U)) \) of \(A(U) \), where \(p_U = p_{A(U)} \). If \(V \subseteq U \), then \(p_V \leq p_U \); hence there is a surjective \(* \)-homomorphism \(I(A(U)) \to I(A(V)) \) given by multiplication by \(p_V \). Note that \(p_U = p_V \) whenever \(U = V \). The set \(\{ p_U \mid U \in \mathcal{O}_{\text{Prim}(A)} \} \) is a complete Boolean algebra isomorphic to the Boolean algebra of regular open subsets of \(\text{Prim}(A) \) [13, Theorem 1.5], and it is precisely the set of projections of the AW*-algebra \(Z(I(A)) \), the centre of \(I(A) \). We will show that \(\mathcal{J}_A \) gives a sheaf of \(C^* \)-algebras.

Suppose that \(U = \bigcup_i U_i \) is a covering of \(U \) by open sets. Then \(p_U = \bigvee_i p_{U_i} \). Let \((x_i)\) be a bounded compatible family, with \(x_i \in p_{U_i} I(A)_+ \) for each \(i \). For each finite set \(F \) of indices, we can find, by finite Boolean algebra, an \(x_F \in \bigvee_{i \in F} p_{U_i} I(A) \) such that \(x_F p_{U_i} \equiv x_i \) for each \(i \in F \). Put \(x = I(A)_{\text{sa-sup}} x_F \). Then \(x \in \bigvee_{i \in F} I(A) \) and \(p(x) = x_F \), since for \(F \subseteq F^c \), both finite, we have \(p_F x_F = x_F \). It follows that \(\mathcal{J}_A \) satisfies the unique gluing axiom.

We conclude this section with a few general remarks on sheaves of \(C^* \)-algebras. The category \(\mathcal{P} \mathcal{S} \mathcal{h}(X) \) of presheaves of \(C^* \)-algebras over \(X \) is the category having as objects the presheaves of \(C^* \)-algebras over \(X \) and as morphisms the natural transformations of contravariant functors \(\mathfrak{A} : \mathcal{O}_X \to \mathcal{C}^* \). The category \(\mathcal{S} \mathcal{h}(X) \) is the full subcategory of \(\mathcal{P} \mathcal{S} \mathcal{h}(X) \) whose objects are the sheaves over \(X \). In case we need to specify the values of a sheaf, we shall write \(\mathcal{S} \mathcal{h}(X, \mathcal{C}) \) where \(\mathcal{C} = C^* \) or \(\mathcal{C} = C^*_t \).

Remarks 3.7 1. Let \(f : Y \to X \) be a continuous mapping between the topological spaces \(Y \) and \(X \). Then \(f^* : \mathcal{O}_X \to \mathcal{O}_Y \) given by \(f^*(U) = f^{-1} (U) \) preserves arbitrary infima and suprema, and thus we get a functor \(f_* : \mathcal{P} \mathcal{S} \mathcal{h}(Y) \to \mathcal{P} \mathcal{S} \mathcal{h}(X) \) which sends sheaves over \(Y \) to sheaves over \(X \), the direct image functor.

2. For an open subset \(U \) of \(X \), we can restrict a sheaf over \(X \) to a sheaf over \(U \) and thus get a functor \(\mathcal{S} \mathcal{h}(X) \to \mathcal{S} \mathcal{h}(U) \). This is a simple, special case of the inverse image functor.

3. For a topological space \(X \), a \(C^* \)-algebra over \(X \) is defined to be a pair \((A, \psi)\) consisting of a \(C^* \)-algebra \(A \) and a continuous mapping \(\psi : \text{Prim}(A) \to X \); see, e.g., [18, Definition 2.3]. In such a situation, we obtain a canonical sheaf of \(C^* \)-algebras over \(X \) by taking \(\psi_* (\mathfrak{M}_A) \), where \(\mathfrak{M}_A \) is the multiplier sheaf of \(A \).

4 The Hausdorff case

Sheaves of \(C^* \)-algebras over a Hausdorff base space are expected to be particularly well behaved; this will be discussed in the subsequent Sections 5 and 6. The present section is of a preparatory nature.

Let \(X \) be a locally compact Hausdorff space. By a \(C_0(X) \)-algebra we understand a \(C^* \)-algebra \(A \) together with an essential \(* \)-homomorphism \(\iota : C_0(X) \to ZM(A) \) into the centre \(ZM(A) \) of the multiplier algebra of \(A \); see, e.g., [18] or [20]. (Recall that \(\text{essentiality} \) here means \(\iota(C_0(X))A = A \) or equivalently, by the Cohen–Hewitt factorization theorem [8, Theorem V.9.2], \(\iota(C_0(X)) A = A \).

We make contact between this concept and Remark 3.7.3 via the following well-known fact, see, e.g., [20, [26]. We provide a quick, independent proof suitable for our purposes.

Proposition 4.1 Let \(X \) be a locally compact Hausdorff space, and let \(A \) be a \(C^* \)-algebra. Then \(A \) is a \(C_0(X) \)-algebra if and only if \((A, \psi)\) is a \(C^* \)-algebra over \(X \) for some continuous mapping \(\psi : \text{Prim}(A) \to X \).

Proof. Suppose we are given an essential \(* \)-homomorphism \(\iota : C_0(X) \to ZM(A) \). For \(t \in \text{Prim}(A) \), choose an irreducible representation \(\pi_t : A \to B(H_t) \) on a Hilbert space \(H_t \) such that \(\ker \pi_t = t \) and let \(\pi_t : M(A) \to B(H_t) \) be its unique extension to an irreducible representation of \(M(A) \). The induced \(* \)-homomorphism \(\gamma_t := \pi_t \circ \iota : C_0(X) \to A \) is non-zero since \(\iota(C_0(X))A = A \). Hence, there is a unique \(x \in X \) such that \(\gamma_t(f) = f(x) \) for all \(f \in C_0(X) \) and we can define \(\psi : \text{Prim}(A) \to X \) by \(\psi(t) = x \). In order to show that \(\psi \) is continuous, take
an open subset \(U \) of \(X \). Let

\[
I = \bigcap_{s \notin \psi^{-1}(U)} s,
\]

which is a closed ideal of \(A \). We aim to show that \(\psi^{-1}(U) = U(I) \) and hence \(\psi^{-1}(U) \) is open. If \(s \notin \psi^{-1}(U) \) then \(I \subseteq s \) and therefore \(s \notin U(I) \). If \(\psi(s) \in U \) there is \(f \in C_0(U) \) such that \(f(\psi(s)) \neq 0 \). Since \(\pi_s(\iota(f) a) = f(\psi(s)) \pi_s(a) \) for every \(a \in A \), there is \(a \in A \) such that \(\pi_s(\iota(f) a) = 0 \) and thus \(\iota(f) a \notin s \). On the other hand, \(\iota(f) a \in I \) as, for each \(s' \notin \psi^{-1}(U), \pi_{s'}(\iota(f) a) = f(\psi(s')) \pi_{s'}(a) = 0 \). It follows that \(I \notin s \) and therefore \(s \in U(I) \).

Conversely, suppose that \(\psi: \text{Prim}(A) \to X \) is a continuous map. Obviously we have a unital \(* \)-homomorphism \(\tau: C_0(X) \to C_0(\text{Prim}(A)) = \beta M(A) \) given by \(\tau(f) = f \circ \psi \). Define \(\iota := \tau|_{C_0(X)}: C_0(X) \to \beta M(A) \). Suppose there is \(t \in \text{Prim}(A) \) such that \(\iota(C_0(X)) A \subseteq t \). Let \(f \in C_0(X) \) such that \(f(\psi(t)) \neq 0 \). For all \(a \in A \), \(0 = \iota(f)a + t = f(\psi(t))(a + t) \) implying that \(A \subseteq t \) which is impossible. It follows that \(\iota(C_0(X)) A = A \) as required.

Remark 4.2 The above argument shows that a \(C_0(X) \)-algebra is nothing but a unital \(* \)-homomorphism \(C_0(X) \to C_0(\text{Prim}(A)) = C(\beta X) \to C_0(\text{Prim}(A)) = C(\beta \text{Prim}(A)) \) with the property that the image of \(\text{Prim}(A) \) under the canonical map

\[
\text{Prim}(A) \to \beta \text{Prim}(A) \to \beta X
\]

lands in \(X \subseteq \beta X \) (where “\(\beta \)” stands for Stone–Čech compactification).

5 From sheaves to \(C^* \)-bundles

Let \(\mathcal{A} \) be a presheaf of \(C^* \)-algebras over a topological space \(X \). We emphasize that \(X \) is in general not assumed to be Hausdorff. We want to associate to \(\mathcal{A} \) a canonical bundle of \(C^* \)-algebras; the following concept of \(C^* \)-bundle turns out to be the correct one in our context, see Remark 5.5 below.

Definition 5.1 For a topological space \(X \), an upper semicontinuous \(C^* \)-bundle over \(X \) (in short, a usc \(C^* \)-bundle over \(X \)) is a triple \((A, \pi, X) \) consisting of a topological space \(A \) and an open, continuous surjection \(\pi: A \to X \) with each fibre \(A_x := \pi^{-1}(x) \) a \(C^* \)-algebra and such that the function \(\| \cdot \|: A \to \mathbb{R} \) defined by \(a \mapsto \|a\|_{A_{\pi(a)}} \) is upper semicontinuous and all algebraic operations are continuous on \(A \); that is, \(+ \) and \(\cdot \) are continuous functions \(A \times_A A \to A \) (where \(A \times_A A = \{(a_1, a_2) \in A \times A | \pi(a_1) = \pi(a_2)\} \)) and \(^* : A \to A \) as well as \(- : C \times A \to A \) are continuous.

Denoting by \(\Gamma_0(U, A), U \in \mathcal{O}_X \) the set of all bounded continuous sections \(s: U \to A \) of \(\pi \) we further require the following properties.

(i) For all \(U \in \mathcal{O}_X \), \(s \in \Gamma_0(U, A) \) and \(\varepsilon > 0 \), the set

\[
V(U, s, \varepsilon) := \{a \in A | \pi(a) \in U \text{ and } \|a - s(\pi(a))\| < \varepsilon\}
\]

is an open subset of \(A \) and these sets form a basis for the topology of \(A \).

(ii) For each \(x \in X \), we have

\[
A_x = \{s(x) | s \in \Gamma_0(U, A), U \text{ an open neighbourhood of } x\}.
\]

We say the usc \(C^* \)-bundle is unital in case each \(A_x \) is a unital \(C^* \)-algebra. Often we will also speak of the total space \(A \) of the bundle as the bundle.

It is easy to see that the relative topology a fibre \(A_x \) inherits from the total space \(A \) in a usc \(C^* \)-bundle is nothing but the norm topology of the \(C^* \)-algebra \(A_x \). For instance, let \(x \in X \) and \(b \in A_x \). For \(\varepsilon > 0 \), there are \(U \in \mathcal{O}_X \) with \(x \in U \) and \(s \in \Gamma_0(U, A) \) such that \(\|s(x) - b\| < \frac{\varepsilon}{2} \), by condition (ii) above. The relative open subset

\[
V(U, s, \frac{\varepsilon}{2}) \cap A_x = \{z \in A_x | \|z - s(x)\| < \frac{\varepsilon}{2}\}
\]

is contained in the \(\varepsilon \)-ball about \(b \), \(\{a \in A_x | \|a - b\| < \varepsilon\} \). Therefore, the relative \(A \)-topology on \(A_x \) is stronger than the norm topology on \(A_x \). It is similarly straightforward to show the reverse inclusion between these topologies.
Lemma 5.2 Let \((A, \pi, X) \) be an upper semicontinuous \(C^* \)-bundle, and let \(Y \) be a subset of \(X \), endowed with the subspace topology. Then \(\Gamma_b(Y, A) \) is a \(C^* \)-algebra.

Proof. The set \(\Gamma_b(Y, A) \) carries natural algebraic operations and is endowed with the supremum norm; so all we need to check is completeness. Take a Cauchy sequence \((s_n) \) in \(\Gamma_b(Y, A) \). There is a well-defined section \(s \) on \(Y \) defined by \(s(x) = \lim_{n \to \infty} s_n(x) \), for \(x \in Y \). To prove the continuity of \(s \), take \(x_0 \in Y \). Let \(V(U, t, \varepsilon) \) be a basic neighbourhood of \(s(x_0) \) in \(A \), so that \(\|s(x_0) - t(x_0)\| < \varepsilon \). Set \(\varepsilon' := \|s(x_0) - t(x_0)\| \) and \(\delta := \varepsilon - \varepsilon' \). There is a positive integer \(n_0 \) such that, for \(n \geq n_0 \), we have

\[
\|s(x) - s_n(x)\| < \delta/2 \quad \text{for all} \quad x \in Y.
\]

Using the triangle inequality we conclude that \(\|s_n(x_0) - t(x_0)\| < \delta/2 + \varepsilon' \) for all \(n \geq n_0 \). Since \(\cdot \|_A \) is upper semicontinuous, the map \(U \cap Y \to \mathbb{R} \) defined by \(x \mapsto \|(s_{n_0} - t)(x)\|_A \) is upper semicontinuous; hence, there is an open subset \(W \subseteq U \) such that

\[
W \cap Y = \{x \in U \cap Y \mid \|(s_{n_0} - t)(x)\| < \delta/2 + \varepsilon'\}
\]

and \(x_0 \in W \). For \(x \in W \cap Y \), we get

\[
\|s(x) - t(x)\| \leq \|s(x) - s_{n_0}(x)\| + \|s_{n_0}(x) - t(x)\| < \delta/2 + \delta/2 + \varepsilon' = \varepsilon.
\]

It follows that \(s(W \cap Y) \subseteq V(U, t, \varepsilon) \), which shows that \(s \) is continuous at \(x_0 \).

Since the convergence is uniform, it is evident that \(s \) is bounded. \(\square \)

Theorem 5.3 Let \((A, \pi, X) \) be an upper semicontinuous \(C^* \)-bundle. Then the assignment \(\mathfrak{A}(U) = \Gamma_b(U, A) \), where \(\Gamma_b(U, A) \) denotes the \(C^* \)-algebra of bounded continuous sections on \(U \in \mathcal{O}_X \) and \(\Gamma_b(\emptyset, A) = \{0\} \), defines a sheaf of \(C^* \)-algebras.

Proof. This follows from Lemma 5.2. \(\square \)

Remark 5.4 Let \((A, \pi, X) \) be a \(* \) \(C^* \)-bundle. For an open subset \(U \) of \(X \), set \(A_U = \bigsqcup_{x \in U} A_x \) with the induced topology; this is a \(* \) \(C^* \)-bundle over \(U \). However, if \(Y \) is an arbitrary subset of \(X \), then, although we can consider the sheaf \(\mathfrak{A}(U \cap Y) = \Gamma_b(U \cap Y, A) \), it is possible that the topology on \(A|_Y \) is different from the induced topology of \(A|_Y \).

Remark 5.5 It is customary to work with bundles of \(C^* \)-algebras over a locally compact Hausdorff space \(X \). Traditionally, the norm function on the total space \(A \) is assumed to be continuous and one speaks of a continuous \(C^* \)-bundle or continuous field of \(C^* \)-algebras; see, e.g., [4] and [8]. More generally, upper semicontinuous bundles of \(C^* \)-algebras were studied in [9], [15], [16], [20] and used more recently in [19], for instance. In this setting, the topology on the total space is uniquely determined by canonical properties of the bundle; this is Fell’s theorem described in detail in [8, Theorem II.13.18] in the continuous case. A very nice exposition on the more general, upper semicontinuous case is contained in [26, Appendix C.2]. As a result, this topology on \(A \) is often not explicitly mentioned. It also turns out that there is a bijective correspondence between upper semicontinuous \(C^* \)-bundles over locally compact Hausdorff spaces and \(C_0(X) \)-algebras mentioned above in Section 4, [20, Theorems 2.3 and 3.3] or [26, Theorem C.26]. Note that, in this generality, \(A \) need not be Hausdorff even though \(X \) is [26, Example C.27].

In our extended setting of entirely arbitrary base spaces we find it more natural to include the topology into the definition of a \(* \) \(C^* \)-bundle, especially for the connection with sheaves.

We now want to associate to a presheaf \(\mathfrak{A} \) of \(C^* \)-algebras a \(* \) \(C^* \)-bundle \((A, \pi, X) \). This is done similarly to the procedure in algebraic geometry using the \(\acute{e} \)tale space, but we have to take into account the right topology.
Theorem 5.6 Given a presheaf \mathfrak{A} of C^*-algebras over X, there is a canonically associated upper semicontinuous C^*-bundle (π, X, \mathcal{O}) over X.

Proof. Let \mathfrak{A} be a presheaf of C^*-algebras over X. For $x \in X$, define the stalk at x by $A_x := \lim_{\to x} \mathfrak{A}(U)$ as the direct limit of C^*-algebras of the directed family $\{\mathfrak{A}(U)\}$, where U ranges over the family of all open neighbourhoods of x in X. Take $A := \bigsqcup_{x \in X} A_x$ and let $\pi(a) = a$ if $a \in A_x$. Then $a \in \mathfrak{A}(U)$ and $x \in U$, we have a canonical $*$-homomorphism $\mathfrak{A}(U) \to A_x$ and we denote by $s(x)$ the image of s under this mapping.

For an open subset U of X, an element $s \in \mathfrak{A}(U)$, and $\varepsilon > 0$, define

$$V(U, s, \varepsilon) = \{a \in A | \pi(a) \in U \text{ and } \|a - s(\pi(a))\| < \varepsilon\}.$$

We define a topology on A by declaring the open subsets as those unions of subsets of the above form $V(U, s, \varepsilon)$. In order to show that this family defines a topology on A, we have to check that an intersection $V(U_1, s_1, \varepsilon_1) \cap V(U_2, s_2, \varepsilon_2)$ of two of these sets is a union of sets of the same form.

Assume that the intersection above is non-empty and take an element a in the intersection. Then $x := \pi(a) \in U_1 \cap U_2$ and $\|a - s_1(x)\| < \varepsilon_1, \|a - s_2(x)\| < \varepsilon_2$. Choose $0 < \delta < \min\{\varepsilon_1 - \|a - s_1(x)\|, \varepsilon_2 - \|a - s_2(x)\|\}$.

Since $a \in A_x$, there are open neighbourhoods W of x, with $W \subseteq U_1 \cap U_2$, such that $\|a - s(x)\| < \delta$. Note that

$$\|s(x) - s_1(x)\| \leq \|s(x) - a\| + \|a - s_1(x)\| < \delta/2 + \|a - s_1(x)\| < \varepsilon_1 - \delta/2,$$

and similarly $\|s(x) - s_2(x)\| < \varepsilon_2 - \delta/2$. Thus there is an open neighbourhood W' of x, contained in W, such that $\|s_{W'} - s_{W}W\| < \varepsilon_1 - \delta/2$. Choose $0 < \delta < \min\{\varepsilon_1 - \|a - s_1(x)\|, \varepsilon_2 - \|a - s_2(x)\|\}$.

Hence $a \in V(W, s, \varepsilon)$ and, for $b \in V(W, s_{W}W, \varepsilon)$, we have

$$\|b\| \leq \|s_{W}w\| + \|b - s(\pi(b))\| < \|a\| + \|s(x)\| + \|s_{W}W\| + \varepsilon < \|a\| + 3\varepsilon = \alpha;$$

thus $V(W, s_{W}W, \varepsilon) \subseteq \{c \in A | \|c\| < \alpha\}$, as desired.

It is straightforward (though tedious) to show that all the algebraic operations on A are continuous. It is a simple exercise to show that A is open and continuous. Observe that, for any open subset U of X, elements of $\mathfrak{A}(U)$ give rise to bounded continuous sections on U via $\mathfrak{A}(U) \to \Gamma_b(U, \mathcal{O})$, $s \to s(x)$ for $x \in U$.

To check the remaining requirements in Definition 5.1, let $s \in \Gamma_b(U, A)$ where U is an open subset of X and let $\varepsilon > 0$. We need to show that $V(U, s, \varepsilon)$ is a union of basic open sets for the topology of A. Indeed, for $a \in V(U, s, \varepsilon)$, there is $s' \in \mathfrak{A}(U')$ with $\|s'(\pi(a)) - a\| < \delta$ for some open neighbourhood U' of $\pi(a)$ contained in U, where $2\delta = \varepsilon - \|a - s(\pi(a))\| > 0$. Letting $x = \pi(a)$ we have $\|s(x) - s'(x)\| < \varepsilon - \delta$ so that $s(x) \in V(U', s', \varepsilon - \delta)$. Using the continuity of s, we can find a smaller open neighbourhood $W \subseteq U'$ of x such that $s(y) \in V(U', s', \varepsilon - \delta)$ for all $y \in W$. It follows that, for $b \in V(W, s', \delta)$,

$$\|b - s(\pi(b))\| \leq \|b - s'(\pi(b))\| + \|s'(\pi(b)) - s(\pi(b))\| < \delta + (\varepsilon - \delta) = \varepsilon,$$

showing that $a \in V(W, s', \delta) \subseteq V(U, s, \varepsilon)$, as desired.

Finally, condition (ii) in Definition 5.1 is satisfied by the very construction of $A_x, x \in X$.

Remark 5.7 Note that if in Theorem 5.6, \mathfrak{A}: $\mathcal{O}_X \to C^*_+$ then the bundle \mathcal{A} consists of unital C^*-algebras.

It is easy to check that if we start out with a C^*-bundle (\mathcal{A}, π, X), consider the sheaf $\mathfrak{A}(U) = \Gamma_b(U, \mathcal{A})$, $U \in \mathcal{O}_X$ and then construct the C^*-bundle associated with \mathfrak{A} as in Theorem 5.6, we get back the original bundle \mathcal{A}.
In the reverse direction, we start from a sheaf \(\mathfrak{A} \). It is clear that, for each \(U \in \mathscr{O}_X \), we have a \(*\)-homomorphism
\[
\mu_U : \mathfrak{A}(U) \to \Gamma_b(U, A) \text{ satisfying } \mu_U(s)(x) = s(x), \quad x \in U, \tag{5.2}
\]
into the sections of the bundle \(A \) constructed in Theorem 5.6, which is injective. Indeed, assume that \(\mu_U(s) = 0 \) for some \(s \in \mathfrak{A}(U) \). Given \(\varepsilon > 0 \) and \(x \in U \), there exists an open subset \(W_x \) of \(U \) such that \(x \in W_x \) and \(\|s|_{W_x}\| < \varepsilon \). Since \(\mathfrak{A} \) is a sheaf, we have an injective \(*\)-homomorphism \(\mathfrak{A}(U) \subseteq \prod_{x \in U} \mathfrak{A}(W_x) \), from which we conclude that \(\|s\| \leq \varepsilon \). Since \(\varepsilon \) is arbitrary, we get \(s = 0 \).

The question whether the map \(\mu_U : \mathfrak{A}(U) \to \Gamma_b(U, A) \) must be surjective seems to be more difficult, and, a priori, there appears to be no good reason for this to happen. A useful observation here is that \(\Gamma_b(U, A) \) is a \(C_b(U) \)-algebra, thus, if the map \(\mu_U \) is an isomorphism then \(\mathfrak{A}(U) \), too, must be a \(C_b(U) \)-module.

Definition 5.8 Let \(\mathfrak{C} \) be a sheaf of commutative unital \(C^* \)-algebras over a topological space \(X \). We say a sheaf \(\mathfrak{A} \) of unital \(C^* \)-algebras is a \(\mathfrak{C} \)-sheaf if, for every \(U \in \mathscr{O}_X \), the \(C^* \)-algebra \(\mathfrak{A}(U) \) is a unital \(\mathfrak{C}(U) \)-Banach module and, whenever \(V \subseteq U \), the restriction map \(\mathfrak{A}(U) \to \mathfrak{A}(V) \) is a module homomorphism; that is, \((ha)_V = (h|_V)(a|_V)\) for all \(a \in \mathfrak{A}(U) \) and \(h \in \mathfrak{C}(U) \).

Definition 5.9 Let \(X \) be a topological space. The sheaf \(\mathfrak{C}(X) \) of unital \(C^* \)-algebras over \(X \) is given by \(\mathfrak{C}(U) = C_b(U), \ U \in \mathscr{O}_X \), and the evident restriction mappings.

Therefore, if \(X \) is locally compact Hausdorff, \(\mathfrak{C}(X) \) is nothing but the multiplier sheaf over \(X \).

Suppose that \(\mathfrak{A} \) is a \(\mathfrak{C}(X) \)-sheaf. Note that \(C_b(U) = C(\beta U) \) and, for \(V \subseteq U \), we have \((ha)_V = (h|_V)(a|_V) \), whenever \(h \in C_b(U) \) and \(a \in \mathfrak{A}(U) \). This yields a \(C_b(U) \)-module homomorphism \(\mu_U : \mathfrak{A}(U) \to \Gamma_b(U, A) \). We have to show that \((h \cdot a)(x) = h(x)a(x) \) for every \(x \in U \). Let \(\varepsilon > 0 \). By the continuity of \(h \), there exists a smaller neighbourhood \(W \) of \(x \) such that \(\|h|_W - h(x)\| < \varepsilon \). Thus we have
\[
\|(ha)_V - h(x)a|_W\| = \|h|_W \cdot a|_W - h(x)a|_W\| \leq \varepsilon \|a\|,
\]
which implies that \((ha)(x) - h(x)a(x) = 0\).

The condition of being a \(\mathfrak{C}(X) \)-sheaf is satisfied by our main examples discussed in Section 3. Consider a \(C^* \)-algebra \(A \) and the multiplier sheaf \(\mathfrak{M}_A \) over \(\text{Prim}(A) \). For \(U \in \mathfrak{C}(\text{Prim}(A)) \), we have \(C_b(U) \cong ZM(A(U)) \) and thus \(\mathfrak{M}_A(U) = M(A(U)) \) is a \(C_b(U) \)-module. The compatibility condition is obvious. Now suppose that \(\mathfrak{A} \) is a sheaf over \(Y \) satisfying this condition and \(\psi : Y \to X \) is a continuous map. Then \(\psi_* (\mathfrak{A}) \) also satisfies this condition because the map \(\psi^* : C_b(U) \to C_b(\psi^{-1}(U)) \) allows us to define a suitable \(C_b(U) \)-module structure on \(\psi_* (\mathfrak{A})(U) = \mathfrak{A}(\psi^{-1}(U)) \) for \(U \in \mathscr{O}_X \). Consequently, if \(A \) is a \(C^* \)-algebra over \(X \), then \(\psi_* (\mathfrak{M}_A) \) is a \(\mathfrak{C}(X) \)-sheaf.

Consider next the injective envelope sheaf of \(A \). For each open subset \(U \) of \(\text{Prim}(A) \), we have an injective \(*\)-homomorphism
\[
C_b(U) \cong ZM(A(U)) \longrightarrow Z(I(A(U))) = \mu_U Z(I(A)),
\]
compare [13]; this gives the desired structure on the sheaf \(\mathfrak{I}_A \).

We shall now discuss two settings in which the mappings \(\mu_U \) in (5.2) are in fact isomorphisms; see also Corollary 6.11 below.

Proposition 5.10 Let \(X \) be a second countable, locally compact Hausdorff space. Let \(\mathfrak{A} \) be a \(\mathfrak{C}(X) \)-sheaf of unital \(C^* \)-algebras over \(X \). Then the natural maps \(\mu_U : \mathfrak{A}(U) \to \Gamma_b(U, A) \) are isomorphisms for all \(U \in \mathscr{O}_X \).

Proof. Let \(U \) be an open subset of \(X \), and take \(s \in \Gamma_b(U, A) \). Then \(U \) is a paracompact space, see, e.g., [22, Proposition 1.7.11]. Let \(x \in U \) and \(\varepsilon > 0 \). Then, by the definition of \(A_x \), there are open neighbourhoods \(W_x \subseteq U \) of \(x \) and \(a_x \in \mathfrak{A}(W_x) \) such that \(\|s|_{W_x}(a_x) - s|_{W_x}\| < \varepsilon \). Since \(U \) is paracompact, we get a locally finite refinement \(U = \bigcup_i U_i \) and \(a_i \in \mathfrak{A}(U_i) \) such that \(\|s|_{U_i}(a_i) - s|_{U_i}\| < \varepsilon \) for each \(i \). Let \((h_i) \) be a partition of unity subordinated to the open covering \((U_i)\) of \(U \), that is, \(0 \leq h_i \leq 1 \), \(F_i := \{x \in U : h_i(x) \neq 0\} \subseteq U_i \) for all \(i \) and \(\sum h_i = 1 \). We are going to define an element \(a = \sum_i h_i a_i \in \mathfrak{A}(U) \). First note that there is a well-defined element \(h_i a_i \) in \(\mathfrak{A}(U) \) extending \(h_i a_i \in \mathfrak{A}(U_i) \). Indeed, using the open covering \(U = U_i \cup (U \setminus F_i) \) and the sheaf property we obtain a unique element \(h_i a_i \in \mathfrak{A}(U) \) such that \(h_i a_i \big|_{U_i} = h_i a_i \) and \(h_i a_i \big|_{U \setminus F_i} = 0 \).
For each \(x \in U \), there is an open neighbourhood \(V_x \) of \(x \) such that \(V_x \) cuts only a finite number of sets \(U_i \), since the covering \(\{ U_i \} \) is locally finite. Let \(G_x \) be the finite set of the indices \(i \) such that \(V_x \cap U_i \neq \emptyset \). We define \(s_{V_x} \in \mathfrak{A}(V_x) \) by \(s_{V_x} = \sum_{i \in G_x} \left(h_i a_i \right) \). Clearly, this gives a compatible family \(\{ s_{V_x} \} \), and by the sheaf property of \(\mathfrak{A} \), there is a unique element \(a = \sum h_i a_i \in \mathfrak{A}(U) \) with \(a|_{V_x} = s_{V_x} \). For \(x \in U \), let \(J_x \subseteq G_x \) be the finite family of indices \(j \) such that \(x \in U_j \). We have

\[
\| s(x) - \mu_U(a)(x) \| \leq \sum_{j \in J_x} h_j(x) \left\| s(x) - \mu_{V_x \cap U_j} (a|_{V_x \cap U_j})(x) \right\| < \varepsilon.
\]

Therefore, the image of \(\mu_U \) is dense in the \(\text{C}^* \)-algebra \(\Gamma_b(U, A) \) but since it is also closed, we find that \(\mu_U \) is surjective.

\[\square\]

Remark 5.11 Let \(\mathfrak{A} \) be a \(C(X) \)-sheaf of unital \(\text{C}^* \)-algebras over a compact Hausdorff space \(X \). In this case, the partition of unity argument in the above proof works for the space \(X \) so that \(\mathfrak{A}(X) \cong \Gamma_b(X, A) \) via the mapping \(\mu_X \).

Another context in which we can recover the sheaf from the \(\text{C}^* \)-bundle is that of Alexandrov spaces. These spaces are attached to a preordered set \((X, \leq) \). We can recover the preordered set \((X, \leq) \) for the Alexandrov topology via the specialisation order, defined by \(x \leq y \) if and only if the closure of \(\{ x \} \) is contained in the closure of \(\{ y \} \).

By [18, Lemma 2.32], \(X \) is an Alexandrov space if and only if every point \(x \) in \(X \) has a smallest neighbourhood \(U_x \). In particular, all finite topological spaces are Alexandrov spaces. Alexandrov spaces are in general highly non-Hausdorff. See [18, Section 2] for a discussion on such spaces in connection with the theory of \(\text{C}^* \)-algebras over topological spaces.

Observe that, by the gluing property of sheaves, a sheaf \(\mathfrak{A} \) of \(\text{C}^* \)-algebras over an Alexandrov space is determined by the \(\text{C}^* \)-algebras \(\mathfrak{A}(U_x) \) and the restriction maps \(\mathfrak{A}(U_x) \to \mathfrak{A}(U_y) \) for \(y \in U_x \). An easy case to have in mind is the one corresponding to the partially ordered set \((X, \leq) \) with \(X = \{ x_1, x_2, x_3, x_4 \} \) and \(x_1 \leq x_2, x_3 \leq x_4 \). In this case, setting \(U_i = U_{x_i} \), we have \(U_1 = \{ x_4 \}, U_3 = \{ x_3, x_4 \}, U_2 = \{ x_2, x_4 \} \) and \(U_1 = X \). A sheaf of \(\text{C}^* \)-algebras over this space \(X \) is just a commutative diagram

\[
\begin{array}{ccc}
\mathfrak{A}(U_1) & \to & \mathfrak{A}(U_2) \\
\downarrow & & \downarrow \\
\mathfrak{A}(U_3) & \to & \mathfrak{A}(U_4)
\end{array}
\]

The \(\text{C}^* \)-algebra \(\mathfrak{A}(U) \) corresponding to the open subset \(U = U_2 \cup U_3 \) is the pullback of the diagram \(\mathfrak{A}(U_2) \to \mathfrak{A}(U_3) \) and the map \(\mathfrak{A}(U_1) \to \mathfrak{A}(U) \) is obtained from the pullback property. So (5.3) determines completely the structure of the sheaf.

Proposition 5.12 Let \(\mathfrak{A} \) be a sheaf of \(\text{C}^* \)-algebras over an Alexandrov space \(X \). Then the natural map \(\mu_U : \mathfrak{A}(U) \to \Gamma_b(U, A) \) is an isomorphism for every open subset \(U \) of \(X \).

Proof. By the gluing property, it suffices to check the statement for the minimal open neighbourhoods \(U_x \), \(x \in X \). Assume that \(s \in \Gamma_b(U_x, A) \) for some \(x \in X \). Observe that \(\mathfrak{A}_x = \mathfrak{A}(U_x) \), so that \(s(x) \in \mathfrak{A}(U_x) \). We will show that \(s = \mu_{U_x}(s(x)) \). For \(\varepsilon > 0 \), consider the open neighbourhood \(V(U_x, \mu_{U_x}(s(x)), \varepsilon) \) of \(s(x) \) in \(\mathfrak{A} \). The continuity of \(s \) and the minimality of \(U_x \) imply that \(s(U_x) \subseteq V(U, \mu_{U_x}(s(x)), \varepsilon) \). Therefore, for all \(y \in U_x \), we have \(\| s(y) - \mu_{U_x}(s(x))(y) \| < \varepsilon \). Since this holds for every \(\varepsilon > 0 \), we conclude that \(s = \mu_{U_x}(s(x)) \). \[\square\]
6 From C^*-bundles to sheaves

In this section we aim to show that, for a separable unital C^*-algebra A with Hausdorff primitive spectrum, the upper semicontinuous C^*-bundle traditionally associated to A (see, e.g., [9] or [20]) agrees with the one obtained from our canonical multiplier sheaf above; cf. Theorem 5.6.

Let (A, ψ) be a C^*-algebra over a topological space X, and let $\mathfrak{M}_X = \psi_*(\mathfrak{M}_A)$ be the multiplier sheaf associated to (A, ψ), see Remark 3.7. Let (A, π_X) be the usc C^*-bundle associated to \mathfrak{M}_X via Theorem 5.6. Thinking of the elements in A_x, $x \in X$ as germs of functions at x, we shall define a mapping into a certain C^*-algebra A_x acting like evaluation at x. It turns out that, in the presence of good local conditions, this map $A_x \rightarrow A_x$ is an isomorphism, so that germs are determined by their values at x; compare with the commutative case in the Introduction.

Definition 6.1 Let $\mathfrak{M}_X = \psi_*(\mathfrak{M}_A)$ be the multiplier sheaf associated to the C^*-algebra (A, ψ) over X. Define

$$A_x := \lim_{x \in U} M(A(U) + I_x/I_x),$$

(6.1)

where U ranges over all open neighbourhoods of x in X, and $I_x := A(x \setminus \{x\})$. (Recall that $A(U) = A(\psi^{-1}(U))$ designates the closed ideal of A determined by $\psi^{-1}(U) \in \mathcal{O}_{\text{Prim}(A)}$.)

Observe that in the situation of the C^*-algebra $(A, \text{id}_{\text{Prim}(A)})$ over Prim(A), we have $I_t = t$ and $A_t = M_{\text{loc}}(A/t)$, the local multiplier algebra of the primitive C^*-algebra A/t, for each $t \in \text{Prim}(A)$.

Proposition 6.2 Let $\mathfrak{M}_X = \psi_*(\mathfrak{M}_A)$ be the multiplier sheaf associated to the C^*-algebra (A, ψ) over X and, for $x \in X$, let A_x be the fibre over x associated to it. Then there is a canonical *-homomorphism $\varphi_x : A_x \rightarrow A_x$, where A_x is the C^*-algebra defined in Definition 6.1. This map is surjective if A is a separable C^*-algebra.

Proof. Let $U \in \mathcal{O}_X$ be an open neighbourhood of x. Then we have a *-homomorphism $M(A(U)) \rightarrow M(A(U)/A(U) \cap I_x)$, which is surjective in case A is separable [21, 3.12.10]. Thus we get a map

$$M(A(U)) \rightarrow M(A(U)/A(U) \cap I_x) \xrightarrow{\cong} M(A(U) + I_x/I_x) \rightarrow A_x$$

that is compatible with the restriction maps $M(A(U)) \rightarrow M(A(V))$ for $x \in V \subseteq U$. This results in a *-homomorphism $\varphi_x : A_x \rightarrow A_x$, which is surjective when A is separable.

In particular, for the C^*-algebra $(A, \text{id}_{\text{Prim}(A)})$ over Prim(A), we get a *-homomorphism $\varphi_t : A_t \rightarrow M_{\text{loc}}(A/t)$, for $t \in \text{Prim}(A)$.

Recall that the Jacobson topology on Prim(A) is the coarsest topology on Prim(A) such that the function $N(a) : \text{Prim}(A) \rightarrow \mathbb{R}, t \mapsto \|a + t\|$ is lower semicontinuous for each $a \in A$.

Definition 6.3 Let X be a topological space and $x \in X$. We say that x is a separated point in X if, for every y not in the closure of $\{x\}$, x and y admit disjoint neighbourhoods.

We include the proof of the following well-known result, compare [7, 3.9.4].

Lemma 6.4 For a C^*-algebra A, $t \in \text{Prim}(A)$ is a separated point if and only if all the maps $N(a), a \in A$, are continuous at t.

Proof. Assume first that all the maps $N(a)$ are continuous at t. Let $s \in \text{Prim}(A) \setminus \{t\}$. Since

$$\overline{\{t\}} = \{t' \in \text{Prim}(A) \mid t \subseteq t'\},$$

we have $t \nsubseteq s$. Taking $a \in t \setminus s$ we obtain

$$N(a)(t) = \|a + t\| = 0 \quad \text{and} \quad N(a)(s) = \|a + s\| \neq 0.$$

It follows that t and s can be separated by disjoint open subsets of X.

www.mn-journal.com © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Now assume that \(t \) is a separated point in \(\text{Prim}(A) \) and take \(a \in A \). Since \(N(a) \) is lower semicontinuous, it suffices to show that, for \(\alpha > N(a)(t) \), there is an open neighbourhood \(V \) of \(t \) such that \(N(a)(V) \subseteq [0, \alpha) \). Given such \(\alpha \), consider the compact subset

\[
K = \{ s \in \text{Prim}(A) \mid \|a + s\| \geq \alpha \}.
\]

Let \(s \in K \); then \(s \notin \overline{\{t\}} \), because the set

\[
U = \{ t' \in \text{Prim}(A) \mid \|a + t'\| > \|a + t\| \}
\]

is open in \(\text{Prim}(A) \) and \(s \in U \) but \(t \notin U \). Since \(t \) is a separated point in \(\text{Prim}(A) \), it follows that there are disjoint open subsets \(U(s) \) and \(V(s) \) such that \(s \in U(s) \) and \(t \in V(s) \). By using the compactness of \(K \), we get an open neighbourhood \(V \) of \(t \) such that \(V \cap K = \emptyset \). If follows that \(N(a)(V) \subseteq [0, \alpha) \), as desired. \(\square \)

If \(A \) is separable, there is a dense \(G_\delta \) subset of \(\text{Prim}(A) \) consisting of separated points [7, 3.9.4]. Evidently, the set \(\text{Sep}(A) \) of separated points of \(\text{Prim}(A) \) consists of minimal elements in \((\text{Prim}(A), \subseteq) \): if \(t_1 \subseteq t_2 \) then \(t_2 \in \overline{\{t_1\}} \) and therefore \(t_1 \) and \(t_2 \) cannot have disjoint neighbourhoods. If \(t_2 \in \text{Sep}(A) \), this implies that \(t_1 \in \overline{\{t_2\}} \), i.e., \(t_2 \subseteq t_1 \).

Proposition 6.5 Let \(A \) be a \(C^* \)-algebra and let \(t \in \text{Prim}(A) \). Then \(t \in \text{Sep}(A) \) if and only if the kernel of the natural map \(\lambda : A_t \to M_{\text{loc}}(A/t) \) is trivial.

Proof. Since the kernel of the composition \(\lambda : A_t \to M_{\text{loc}}(A/t) \) is trivial, we find that the kernel of the natural map \(\lambda : A_t \to A \) is always contained in \(t \). Recall that \(a_{U} \) denotes the image of \(a \in A \) under the canonical \(*\)-homomorphism \(A \to M(A(U)) \) so that \(\|a_{U}\| = \sup\{\|a + t'\| \mid t' \in U \} \).

Assume that \(t \) is a separated point in \(\text{Prim}(A) \) and let \(a \) be an element in \(t \). Since \(N(a)(t) = 0 \) and \(N(a) \) is continuous at \(t \) by Lemma 6.4, it follows that, for every \(\varepsilon > 0 \), there is an open neighbourhood \(U \) of \(t \) such that \(N(a)(s) < \varepsilon \) for all \(s \in U \). We conclude that \(\|a_{U}\| \leq \varepsilon \) and thus \([a] = 0 \) in \(A_t \).

Conversely, assume that the kernel of the natural map \(\lambda : A_t \to A_t \) is trivial. If \(s \in \text{Prim}(A) \) and \(s \notin \overline{\{t\}} \), then \(t \notin s \). Take \(a \in t \setminus s \) with \(\|a + s\| = 1 \). By hypothesis, \(a \) belongs to the kernel of the natural map \(\lambda : A_t \). Therefore there is an open neighbourhood \(V \) of \(t \) such that \(N(a)(t') < 1/2 \) for every \(t' \in V \). On the other hand, since \(N(a) \) is lower semi-continuous, the set \(V = \{ s' \in \text{Prim}(A) \mid N(a)(s') > 1/2 \} \) is open in \(\text{Prim}(A) \) and it contains \(s \). Consequently, \(t \) and \(s \) can be separated by disjoint open subsets in \(\text{Prim}(A) \), and hence \(t \in \text{Sep}(A) \). \(\square \)

We are ready to provide a characterization of the points \(t \) in \(\text{Prim}(A) \) such that \(\varphi_t \) is injective.

Theorem 6.6 Let \(A \) be a \(C^* \)-algebra and let \(t \in \text{Prim}(A) \). Then the natural map \(\varphi_t : A_t \to M_{\text{loc}}(A/t) \) is injective if and only if, for every open neighbourhood \(U \) of \(t \) in \(\text{Prim}(A) \), \(t \) is a separated point in \(\text{Prim}(M(A(U))) \).

Proof. We fix the following notation. For \(t \in \text{Prim}(A) \), let \(\pi_t : A \to B(H_t) \) be an irreducible representation such that \(\text{ker} \pi_t = t \). If \(t \in U \in \mathcal{O}(\text{Prim}(A)) \), then the restriction of \(\pi_t \) to \(A(U) \) gives an irreducible representation of \(A(U) \) on the same Hilbert space \(H_t \). The unique extension of \(\pi_t \) to a representation of \(M(A(U)) \) on \(H_t \) will be denoted by \(\varphi_t \). (We omit the reference to \(U \) to simplify the notation.) Then \(U \) is considered as a dense open subset of \(\text{Prim}(M(A(U))) \) via the correspondences \(t \mapsto t \cap U \mapsto \text{ker} \varphi_t \).

Note that, by Proposition 6.5, \(t \) is a separated point in \(\text{Prim}(M(A(U))) \) if and only if the kernel of the canonical map \(\lambda_{U} : M(A(U)) \to A_t \) is precisely \(\text{ker} \varphi_t \). On the other hand, \(\varphi_t : A_t \to M_{\text{loc}}(A/t) \) is injective if and only if the restriction of \(\varphi_t \) to \(\lambda_U(M(A(U))) \) is injective for every open neighbourhood \(U \) of \(t \) in \(\text{Prim}(A) \).

Thus the claim is proved once we can show that the restriction of \(\varphi_t \) to \(\lambda_U(M(A(U))) \) is injective if and only if \(\text{ker} \lambda_U = \text{ker} \varphi_t \).

In the commutative diagram

\[
\begin{array}{ccc}
M(A(U)) & \xrightarrow{\lambda_U} & A_t \\
\downarrow & & \downarrow \varphi_t \\
M(A(U) + t/t) & \xrightarrow{\varphi_t} & M_{\text{loc}}(A/t)
\end{array}
\]

(6.2)

(c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.mm-journal.com
the kernel of the natural map \(M(A(U)) \to M(A(U) + t/t) \) is precisely \(\ker \varpi_t \), and the map \(M(A(U) + t/t) \to M_{\text{loc}}(A/t) \) is injective. From this we conclude that the inclusion \(\ker \lambda_U \subseteq \ker \varpi_t \) always holds, and that the equality \(\ker \lambda_U = \ker \varpi_t \) holds if and only if the restriction of \(\varphi_t \) to \(\lambda_U(M(A(U))) \) is injective.

This concludes the proof.

Since the map \(\varphi_t \) is always surjective when \(A \) is a separable \(C^* \)-algebra, we obtain the following consequence.

Corollary 6.7 Let \(A \) be a separable \(C^* \)-algebra and let \(t \in \text{Prim}(A) \). Then the natural map \(\varphi_t: A_t \to M_{\text{loc}}(A/t) \) is an isomorphism if and only if, for every open neighbourhood \(U \) of \(t \) in \(\text{Prim}(A) \), \(t \) is a separated point in \(\text{Prim}(M(A(U))) \).

Remark 6.8 The following example was communicated to us by Douglas Somerset. Let \(A \) be a separable \(C^* \)-algebra of sequences of complex matrices converging to a scalar multiple of \(e_{11} \) (so that all entries in the limit are zero but for the \((1,1) \)-entry). Then \(A \) is a separable \(C^* \)-algebra with Hausdorff primitive ideal space but the maximal ideal \(t \) of \(A \) corresponding to the evaluation at the limit of the \((1,1) \)-entries is not separated in \(\text{Prim}(M(A)) \). This shows that the hypothesis in Theorem 6.6 cannot be relaxed in general.

We will now specialise to points in \(\text{Prim}(A) \) which are both separated and closed.

Lemma 6.9 Let \(A \) be a unital \(C^* \)-algebra, and assume that \(t \in \text{Sep}(A) \) is a closed point in \(\text{Prim}(A) \). Denote by \(A_t \) the fibre over \(t \) corresponding to the multiplier sheaf of \(A \). Then the natural map \(\varphi_t: A_t \to A/t \) is an isomorphism.

Proof. Since \(A \) is unital and \(t \) is a closed point in \(\text{Prim}(A) \), the \(C^* \)-algebra \(A/t \) is simple and unital so that \(M_{\text{loc}}(A/t) = A/t \). The map \(\varphi_t: A_t \to M_{\text{loc}}(A/t) \) given by Proposition 6.2 therefore simplifies to \(\varphi_t: A_t \to A/t \). The composition \(A \to A_t \to A/t \) of \(\varphi_t \) with the canonical \(* \)-homomorphism \(A \to A_t \) is just the canonical quotient map \(A \to A/t \). By Proposition 6.5, the kernel of the map \(A \to A_t \) is \(t \), so that we get a section of \(\varphi_t \). Consequently, \(\varphi_t \) is injective when restricted to the image of \(A \) in \(A_t \).

Let \(U \) be an open neighbourhood of \(t \) in \(\text{Prim}(A) \), and take \(m \in M(A(U)) \). Choose \(e \in A(U)_+ \) with the property that \(\|e\| = 1 \) and \(e + t = 1 + t \) in \(A/t \). (Note that \(A(U) + t/t = A/t \) as \(A/t \) is simple.) Observe that \(N(1 - e)(t) = 0 \). Since \(t \) is a separated point, it follows from Lemma 6.4 that \(N(1 - e) \) is continuous at \(t \). Hence there is an open neighbourhood \(U_1 \) of \(t \) contained in \(U \) such that \(N(1 - e)(s) < 1/2 \) for every \(s \in U_1 \). Set \(Y = U_1 \), a closed subset of \(\text{Prim}(A) \), and consider \(U_2 = \text{Prim}(A) \setminus Y \), an open subset of \(\text{Prim}(A) \) with \(U_1 \cap U_2 = \emptyset \). Then \(A/A(U_2) \) is a unital \(C^* \)-algebra with primitive spectrum \(Y \) and \(A(U_1) \) sits as an essential ideal in it. It thus follows that we have an embedding of unital \(C^* \)-algebras \(A/A(U_2) \subseteq M(A(U_1)) = \mathfrak{M}_A(U_1) \). The set \(\{s \in \text{Prim}(A) \mid N(1 - e)(s) \leq 1/2\} \) is closed in \(\text{Prim}(A) \) and contains \(U_1 \); consequently \(N(1 - e)(s) \leq 1/2 \) for every \(s \in Y \). Since \(N_{A/(A(U_2))(1-e+A(U_2))(s)} = N_{A(1-e)(s)} \leq 1/2 \) for every \(s \in Y \), we get that \(\|1-e+A(U_2)\| \leq 1/2 < 1 \), and \(e + A(U_2) \) is invertible in \(A/A(U_2) \). Take any \(y \in A \) such that \(y + A(U_2) = (e + A(U_2))^{-1} \).

Then we have

\[
m_{\mathfrak{M}_A(U_1)}(m_{\mathfrak{M}_A(U_2)}(e + A(U_2))(y + A(U_2))) = (me + A(U_2))(y + A(U_2)) \in A/A(U_2),
\]

which shows that \(m_{\mathfrak{M}_A(U_2)} \) belongs to the image of the map \(A \to \mathfrak{M}_A(U_1) \). Thus we find that the image of \(m \) in \(A_t \) is \(\lim_{t \in \text{Prim}(A)} \mathfrak{M}_A(W) \) belongs to the image of the map \(A \to A_t \), and it turns out that the map \(A/t \to A_t \) is surjective. Since it is also injective, we conclude that it is an isomorphism, and so its inverse, \(\varphi_t \), must be an isomorphism too.

We now come to the main result in this section.

Theorem 6.10 Let \(A \) be a unital \(C^* \)-algebra with Hausdorff primitive spectrum \(\text{Prim}(A) \). Then all the fibres \(A_t = A/t, t \in \text{Prim}(A) \) are isomorphic to the fibres \(A_t \) associated to the multiplier sheaf \(\mathfrak{M}_A \) of \(A \). Moreover, we have \(A \cong \Gamma(\text{Prim}(A), A) \) and \(A(U) \cong \Gamma(U, A) \) for each \(U \in \mathcal{O}_\text{Prim}(A) \).

Proof. Since every point in \(\text{Prim}(A) \) is closed and separated, we conclude from Lemma 6.9 that all the maps \(\varphi_t: A_t \to A_t, t \in \text{Prim}(A) \), are isomorphisms.

By Proposition 5.10 and Remark 5.11, we have

\[
A = \mathfrak{M}_A(\text{Prim}(A)) = \Gamma(\text{Prim}(A), A) = \Gamma(\text{Prim}(A), A).
\]
Finally, for each $U \in \mathcal{O}_{\text{Prim}(A)}$, we obtain

$$A(U) = C_0(U)A = C_0(U)\Gamma(\text{Prim}(A), A) = \Gamma_0(U, A).$$

The above theorem yields an isomorphism of C^*-bundles. We can indeed derive from it an isomorphism of sheaves, and thus obtain another instance where the sheaf of bounded continuous local sections agrees with the sheaf we start from.

Corollary 6.11 Let A be a unital C^*-algebra such that $\text{Prim}(A)$ is Hausdorff. Then the multiplier sheaf \mathcal{M}_A of A is isomorphic to the sheaf $\Gamma_b(-, A)$ of bounded continuous local sections of the C^*-bundle A associated to \mathcal{M}_A.

Proof. Let $U \in \mathcal{O}_{\text{Prim}(A)}$. In the commutative diagram

$$
\begin{array}{ccc}
M(A(U)) & \xrightarrow{\mu_U} & \Gamma_b(U, A) \\
\downarrow & & \downarrow \\
A(U) & \xrightarrow{\mu_U} & \Gamma_0(U, A)
\end{array}
$$

μ_U is injective on $M(A(U))$ by (5.2) while, restricted to $A(U)$, it is an isomorphism by Theorem 6.10. The composition $\nu \circ \mu_U$ extends the isomorphism $\mu_U : A(U) \to \Gamma_0(U, A)$, so by commutativity of the diagram, must be an isomorphism. Since $\Gamma_0(U, A)$ is an essential ideal in $\Gamma_b(U, A)$, the mapping ν is injective. As ν is clearly surjective, it follows that $\mu_U : M(A(U)) \to \Gamma_b(U, A)$ is surjective as well.

The restriction mappings in the two sheaves are compatible with the isomorphisms μ_U, from which we conclude that $\mathcal{M}_A \cong \Gamma_b(-, A)$.

Remark 6.12 Under the conditions of Theorem 6.10, the norm function $A \to \mathbb{R}$ is continuous. This follows easily from the lower semicontinuity of the maps $N(a)$ for $a \in A$. Indeed, if $a + t \in A/t$ and $N(a)(t) > \alpha$ for some $\alpha \in \mathbb{R}_+$, then there is an open neighbourhood U of t in $\text{Prim}(A)$ such that $N(a)(t') > \alpha + \varepsilon$ for all $t' \in U$, for some $\varepsilon > 0$, and thus $\|b + t'\| > \alpha$ for every $b + t' \in V(U, a_U, \varepsilon)$. This shows that the norm function $\|\cdot\| : A \to \mathbb{R}$ is lower-semicontinuous, and thus continuous. We can recover the continuity of the norm functions $N(a)$, for $a \in A$, just by looking at the composition $\text{Prim}(A) \to A \to \mathbb{R}$ given by $t \mapsto a + t \mapsto \|a + t\|$. Moreover, all the functions $N(z) : U \to \mathbb{R}$, $N(z)(t) = \|z + t\|$, with $z \in M(A(U))$ are continuous, for $U \in \mathcal{O}_{\text{Prim}(A)}$ (regarding U as an open subset of $\text{Prim}(M(A(U)))$).

Remark 6.13 In general, the map $\varphi_t : A_t \to M_{\text{loc}}(A/t)$, $t \in \text{Prim}(A)$, is not an isomorphism. A necessary condition for this to happen is that t must be a separated point in $\text{Prim}(A)$, which follows from Proposition 6.5. In case $\text{Prim}(A)$ is finite this condition is also sufficient; however, this is not always the case, see Remark 6.8 above.

7 A sheaf representation of $M_{\text{loc}}(A)$

For a commutative C^*-algebra A, we have

$$I(A) = M_{\text{loc}}(A) = \lim_{U \in D} C_0(U) = \text{alg}\lim_{T \in T} C_0(T),$$

where D and T are the filters of open dense and dense G_δ subsets of $\text{Prim}(A)$, respectively.

This is no longer true in the non-commutative setting, but we will show that both C^*-algebras $M_{\text{loc}}(A)$ and $I(A)$ surface as the derived algebras attached to the multiplier sheaf and the injective envelope sheaf, respectively, on the same space $\text{Prim}(A)$. The regular monotone completion of A, see [12], can be obtained in a similar way.

We start by associating an appropriate C^*-algebra to any upper semicontinuous C^*-bundle over a topological space X; see Section 5. We shall assume throughout that X is a Baire space. This is of course the case for $X = \text{Prim}(A)$. Let (A, π, X) be an usc C^*-bundle. We denote by T the family of dense G_δ subsets of X, downwards directed by inclusion.
For each \(U \in \mathcal{O}_X \), define
\[
\mathfrak{D}(U) = \text{alg lim}_{T \in \mathcal{T}} \Gamma_b(T \cap U, A),
\] (7.1)
where \(\Gamma_b(T \cap U, A) \) is the \(C^* \)-algebra of bounded continuous sections on \(T \cap U \). Note that, since the norm function is merely upper semicontinuous on \(A \), we cannot guarantee that the restriction maps
\[
\Gamma_b(T \cap U, A) \to \Gamma_b(T' \cap U, A)
\]
are isomorphic for \(T' \subseteq T, T, T' \in \mathcal{T} \). Observe, in addition, that \(\mathfrak{D}(U) = \mathfrak{D}(V) \) whenever \(U = V \).

We first show that \(\mathfrak{D} \) is a presheaf of \(C^* \)-algebras over \(X \).

Lemma 7.1 For each \(U \in \mathcal{O}_X \), the algebra \(\mathfrak{D}(U) \) is a \(C^* \)-algebra.

Proof. By Lemma 5.2, \(\Gamma_b(T \cap U, A) \) is a \(C^* \)-algebra for every \(T \in \mathcal{T} \). Let \(D \) be the \(C^* \)-algebra \(D = \lim_{T \in \mathcal{T}} \Gamma_b(T \cap U, A) \). Then there is a *-homomorphism \(\Phi : \mathfrak{D}(U) \to D \), and our task is to show it is an isomorphism.

We first establish the injectivity. Let \(\{s\} \in \text{alg lim} \Gamma_b(T \cap U, A) \) be an element such that \(\Phi([s]) = 0 \), where \(s \in \Gamma_b(T_0 \cap U, A) \) for a dense \(G_\delta \) subset \(T_0 \) of \(X \). For every positive integer \(n > 1 \), there is \(T_n \in \mathcal{T} \) such \(T_n \subseteq T_{n-1} \) and \(\|s|_{T \cap U} \| < 1/n \). Since \(X \) is a Baire space, \(\mathcal{T}_\infty = \bigcap_{n=1}^{\infty} T_n \) is a dense \(G_\delta \) and \(s = 0 \) on \(\mathcal{T}_\infty \cap U \). It follows that \([s] = 0\) in \(\text{alg lim} \Gamma_b(T \cap U, A) \).

Now we show that \(\Phi \) is surjective. Identifying \(\text{alg lim} \Gamma_b(T \cap U, A) \) with its image in \(D \), this amounts to show its completeness. Let \(\{s_n\}_{n \in \mathbb{N}} \) be a Cauchy sequence in \(\text{alg lim} \Gamma_b(T \cap U, A) \). By using the Baire property of \(X \), one can easily check that there is a dense \(G_\delta \) subset \(T \) of \(X \) such that \(\langle s_n|_{T \cap U} \rangle_{n \in \mathbb{N}} \) is a Cauchy sequence in the \(C^* \)-algebra \(\Gamma_b(T \cap U, A) \). The limit \(s \in \Gamma_b(T \cap U, A) \) of this Cauchy sequence satisfies that \([s] = \lim_{n \to \infty} [s_n]\), showing that the algebra \(\text{alg lim} \Gamma_b(T \cap U, A) \) is already complete. \(\square \)

Proposition 7.2 Let \((A, \pi, X)\) be an upper semicontinuous bundle of \(C^* \)-algebras. Then \(\mathfrak{D} = \mathfrak{D}(A, \pi, X) \) is a presheaf of \(C^* \)-algebras over \(X \).

Proof. Clearly, for the \(C^* \)-algebras defined in (7.1), we have restriction homomorphisms \(\mathfrak{D}(U) \to \mathfrak{D}(V) \), whenever \(V \subseteq U \).

Starting with a presheaf \(\mathfrak{A} \) of \(C^* \)-algebras over a topological space \(X \), we now want to apply the above construction to the upper semicontinuous \(C^* \)-bundle \((A, \pi, X)\) associated to \(\mathfrak{A} \) via Theorem 5.6. In this way, we define the derived presheaf \(\mathfrak{D}\mathfrak{A} \) of \(\mathfrak{A} \) as the presheaf \(\mathfrak{D}(A, \pi, X) \).

It turns out that this presheaf is in fact a sheaf. To prove this, we need a known fact in Boolean algebra for which we do not have a reference.

Lemma 7.3 Let \((p_i)_{i \in I}\) be a family of elements of a complete Boolean algebra \(\mathfrak{B} \). Then there exists a family of pairwise orthogonal elements \((q_i)_{i \in I}\) in \(\mathfrak{B} \) such that \(q_i \leq p_i \) for all \(i \) and \(\bigvee_{i \in I} q_i = \bigvee_{i \in I} p_i \).

Proof. We may assume that \(I = \{\alpha \mid \alpha < \gamma\} \), the set of ordinals less than a given limit ordinal \(\gamma \).

For \(\beta < \gamma \), set \(p_\beta = \bigvee_{\alpha < \beta} p_\alpha \) and \(q_\beta = p_{\beta+1} - P_\beta \). Clearly, \((q_\beta)_{\beta < \gamma}\) is a family of pairwise orthogonal elements in \(\mathfrak{B} \). Moreover,
\[
q_\beta = p_{\beta+1} - p_\beta = \bigvee_{\alpha \leq \beta} p_\alpha - \bigvee_{\alpha < \beta} p_\alpha = p_\beta \left(1 - \bigvee_{\alpha < \beta} p_\alpha\right) \leq p_\beta
\]
so that \(q_\beta \leq p_\beta \) for all \(\beta < \gamma \).

Finally we check that \(\bigvee_{i \in I} q_i = \bigvee_{i \in I} p_i \). Since \(\bigvee_{i \in I} q_i \leq \bigvee_{i \in I} p_i \), it will suffice to verify by transfinite induction that \(p_\beta \leq \bigvee_{\alpha \leq \beta} q_\alpha \) for all \(\beta < \gamma \). Assuming that \(p_\lambda \leq \bigvee_{\alpha \leq \lambda} q_\alpha \) for all \(\lambda \leq \beta \), we shall show that \(p_{\beta+1} \leq \bigvee_{\alpha \leq \beta+1} q_\alpha \). Indeed,
\[
p_{\beta+1} = p_{\beta+1} - p_\beta P_{\beta+1} + p_\beta P_{\beta+1}
= p_{\beta+1} \vee P_{\beta+1} - P_{\beta+1} + p_{\beta+1} P_{\beta+1}
\leq q_{\beta+1} + \bigvee_{\alpha \leq \beta} q_\alpha = \bigvee_{\alpha \leq \beta+1} q_\alpha.
\]
where we used that $P_{\beta+1} \leq \bigvee_{\alpha \leq \beta} q_\alpha$ by induction hypothesis. If β is a limit ordinal then $\bigvee_{\alpha < \beta} q_\alpha = \bigvee_{\alpha < \beta} p_\alpha = P_\beta$ by induction hypothesis, and we have

$$
\bigvee_{\alpha \leq \beta} q_\alpha = q_\beta + \bigvee_{\alpha < \beta} q_\alpha = P_{\beta+1} = P_\beta + P_\beta = P_{\beta+1}
$$

which implies that $p_\beta \leq \bigvee_{\alpha < \beta} q_\alpha$. This concludes the proof. \hfill \Box

Proposition 7.4 Let \mathfrak{A} be a presheaf of unital C^*-algebras over a Baire space X. Then the derived presheaf $\mathfrak{D}_\mathfrak{A}$ is a sheaf of unital C^*-algebras over X.

Proof. Let $\mathcal{D} = \mathfrak{D}_\mathfrak{A}$ denote the derived presheaf of \mathfrak{A}. To show the gluing property, we start with some preliminary observations. For each open subset U of X, let p_U be the class in $\mathfrak{D}(X)$ of the characteristic function of U, seen as a continuous section on the union of U and the interior of $X \setminus U$. Then p_U is a central projection in $\mathfrak{D}(X)$ and $p_U \mathfrak{D}(X) = \mathfrak{D}(U)$. Observe also that $p_U = p_V$ whenever $\overline{U} = \overline{V}$, so that the set of all the projections $\{p_U\}_{U \in \mathcal{O}_X}$ is a complete Boolean algebra \mathfrak{B} isomorphic to the Boolean algebra of regular open subsets of X.

If we are given a collection $\{U_i \mid i \in I\}$ of pairwise disjoint open subsets of X and a bounded family $(a_i)_{i \in I}$ of elements in $\mathfrak{D}(X)$ with $p_{U_i} a_i = a_i$ for all i, where $p_i = p_{U_i}$, then there is a unique $a = \sum a_i p_i \in p \mathfrak{D}(X)$ such that $p_i a = a_i$ for every $i \in I$, where p denotes the supremum of the family (p_i). To show the gluing property of \mathfrak{D}, we consider a set of projections $(p_i)_{i \in I}$ corresponding to open sets U_i of X and a bounded set of elements $(a_i)_{i \in I}$ with $p_i a_i = a_i$ and $p_j p_i a_i = p_j p_i a_j$ for every $i, j \in I$. Then we have to show that there is a unique $a \in p \mathfrak{D}(X)$ such that $a p_i = a_i p_i$ for all $i \in I$, where p is the supremum of the family (p_i).

By Lemma 7.3, there is a family $(q_i)_{i \in I}$ of pairwise orthogonal projections in the complete Boolean algebra \mathfrak{B} such that $q_i \leq p_i$ for all i and $\bigvee_{i \in I} q_i = \bigvee_{i \in I} p_i$. It follows from the previous observation that there is a unique element $a = \sum a_i q_i \in p \mathfrak{D}(X)$ such that $a q_i = a_i q_i$ for all i, for each $i \in I$,

$$
ap_i = \left(\sum_{j \in I} a_j q_j \right) p_i = \sum_{j \in I} a_j p_i q_j = \sum_{j \in I} a_j p_i q_j = a_i p_i \left(\sum_{j \in I} q_j \right) = a_i p_i,
$$

from which we conclude the result. \hfill \Box

The process of passing to the derived sheaf obeys the following functorial property.

Proposition 7.5 Let X be a Baire space. The map \mathfrak{D} defines a functor

$$
\mathfrak{D} : \mathcal{PSh}(X, C^*_+ \mathbb{C}) \rightarrow \mathcal{Sh}(X, C^*_+ \mathbb{C}).
$$

If $\iota : \mathfrak{A} \rightarrow \mathfrak{B}$ is a faithful natural transformation (that is, $\iota_U : \mathfrak{A}(U) \rightarrow \mathfrak{B}(U)$ is injective for every $U \in \mathcal{O}_X$), then $\mathfrak{D}(\iota) : \mathfrak{D}_\mathfrak{A} \rightarrow \mathfrak{D}_\mathfrak{B}$ is also faithful. For every presheaf \mathfrak{A} of unital C^*-algebras over X, the sheaf $\mathfrak{D}_\mathfrak{A}$ is a $\mathfrak{D}_{\iota(X)}$-sheaf.

Proof. Let \mathfrak{A} and \mathfrak{B} be two presheaves of unital C^*-algebras over X, and let \mathfrak{A} and \mathfrak{B} be the usc C^*-bundles associated to \mathfrak{A} and \mathfrak{B}, respectively (Theorem 5.6). We first show that a natural transformation $F : \mathfrak{A} \rightarrow \mathfrak{B}$ yields a continuous bundle map $\tilde{F} : \mathfrak{A} \rightarrow \mathfrak{B}$. In fact, \tilde{F} induces a morphism of C^*-algebras

$$
F_1 : A_1 \rightarrow B_1
$$

between the fibres of the C^*-bundles for each $t \in X$.

We show that \tilde{F} is continuous. Let $a \in A$ and set $t_0 := \pi(a)$. Let $V(U, s, \varepsilon)$ be a basic neighbourhood of $F_{t_0}(a)$ in \mathfrak{B}, so that U is an open neighbourhood of $t_0, s \in \mathfrak{B}(U)$ and $\|F_{t_0}(a) - s(t_0)\| < \varepsilon$.

Set $\varepsilon' := \|F_{t_0}(a) - s(t_0)\|$ and choose $\delta > 0$ such that $\varepsilon' + 2\delta < \varepsilon$. There are an open neighbourhood W_1 of t_0, with $W_1 \subseteq U$, and $s_1 \in \mathfrak{A}(W_1)$ such that

$$
\|s_1(t_0) - a\| < \delta.
$$

It follows that

$$
\|F_{W_1}(s_1)(t_0) - F_{t_0}(a)\| = \|F_{t_0}(s_1(t_0) - a)\| \leq \|s_1(t_0) - a\| < \delta.
$$

(7.3)
Therefore
\[\|(s_{|W_2} - F_{W_2}(s_1))(t_0)\| \leq \|s(t_0) - F_{\alpha_0}(a)\| + \|F_{W_2}(s_1)(t_0) - F_{\alpha_0}(a)\| < \varepsilon' + \delta. \]
Consequently, there is an open subset \(W_2 \) of \(X \) with \(t_0 \in W_2 \subseteq W_1 \) such that
\[\|s_{|W_2} - F_{W_2}(s_{|W_2})\| < \varepsilon' + \delta. \]
(7.4)
In order to show that \(\tilde{\mathcal{F}} \left(V(W_2, s_1|W_2, \delta)\right) \subseteq V(U, s, \varepsilon) \) take \(a' \in V(W_2, s_1|W_2, \delta) \). We have \(\|a' - s_1(\pi(a'))\| < \delta \) and so, using (7.4), we obtain
\[
\|\tilde{\mathcal{F}}(a') - s(\pi(a'))\| \leq \|F_{\pi(a')}(a') - F_{W_2}(s_1|W_2)(\pi(a'))\| + \|F_{W_2}(s_1|W_2)(\pi(a')) - s(\pi(a'))\|
\leq \|a' - s_1(\pi(a'))\| + \|s_{|W_2} - F_{W_2}(s_{|W_2})\| < \varepsilon' + 2\delta < \varepsilon,
\]
which shows that \(\tilde{\mathcal{F}}(a') \in V(U, s, \varepsilon) \), as claimed.

We now define \(\mathcal{D}(F) : \mathcal{D}_\Theta \rightarrow \mathcal{D}_\Theta \) by
\[
\mathcal{D}(F)(s) = [\tilde{\mathcal{F}} \circ s] \text{ for } [s] \in \mathcal{D}_\Theta(U), \text{ } U \in \mathcal{O}_X.
\]
It is easy to show that \(\mathcal{D}(\iota) \) is faithful whenever \(\iota \) is a faithful natural transformation. Since the C*-algebra \(\Gamma_b(T \cap U, A) \) is a Banach module over \(G_b(T \cap U) \) for every \(T \in \mathcal{O}_X \) and every \(U \in \mathcal{O}_X \), we see that \(\mathcal{D}_\Theta \) is automatically a \(\mathcal{D}_\Theta(X) \)-sheaf.

We are ready to prove our main result which states that the derived sheaf of the multiplier sheaf of a C*-algebra \(A \) agrees with the sheaf associating to each \(U \in \mathcal{O}_{\text{Prim}(A)} \) the algebra \(M_{\text{loc}}(A(U)) = p_U : M_{\text{loc}}(A) \). We shall call the latter sheaf the local multiplier sheaf of \(A \) and denote it by \(\mathcal{M}_{\text{loc}}A \).

Theorem 7.6 There is a natural isomorphism between the derived sheaf of the multiplier sheaf of a C*-algebra \(A \) and the local multiplier sheaf of \(A \), that is, \(\mathcal{D}_{\text{M}_{\text{loc}}A} \cong \mathcal{M}_{\text{loc}}A \).

Proof. Since, for \(U \in \mathcal{O}_{\text{Prim}(A)} \), we have \(\mathcal{M}_{\text{loc}}A(U) = M_{\text{loc}}(A(U)) \), and the dense \(G_\delta \)'s of \(U \) are the intersections of dense \(G_\delta \)'s of \(\text{Prim}(A) \) with \(U \), it suffices to show that there is an isomorphism \(M_{\text{loc}}(A) \cong \text{alg lim}_{T \in \mathcal{T}} G_\delta(T, A) \), where \(T \) is the family of dense \(G_\delta \)'s of \(\text{Prim}(A) \) and \((A, \pi, \text{Prim}(A)) \) is the C*-bundle associated to \(\mathcal{M}_A \).

Let \(U \) be a dense open subset of \(\text{Prim}(A) \). There is a natural injective *-homomorphism \(\mu_U : M(A(U)) \rightarrow \Gamma_b(U, A) \), see Section 5, (5.2). We claim that the composition
\[
M(A(U)) \rightarrow \Gamma_b(U, A) \rightarrow \text{alg lim}_{T \in \mathcal{T}} \Gamma_b(T, A)
\]
is an isometry, that is, given \(x \in M(A(U)) \), \(\|x\| = \|\mu_U(x)\| \) for every dense \(G_\delta \) subset \(T \) of \(U \). Observe that \(T \) is a dense subset of \(\text{Prim}(M(A(U))) \), because \(U \) is dense in \(\text{Prim}(M(A(U))) \). Therefore, \(\|x\| = \sup_{t \in T} \|x + \tilde{t}\| \), where \(\tilde{t} \in \text{Prim}(M(A(U))) \) is the primitive ideal of \(M(A(U)) \) corresponding to \(t \). Recall that we have a *-homomorphism
\[
\varphi_t : A_t \rightarrow M_{\text{loc}}(A/t),
\]
and that, by the commutative square (6.2), we have \(x + \tilde{t} = \varphi_t(\mu_U(x)(t)) \) for every \(t \in U \). This entails that
\[
\|x\| = \|\mu_U(x)\| \geq \|\mu_U(x)(t)\| \geq \sup_{t \in T} \|\varphi_t(\mu_U(x)(t))\| = \sup_{t \in T} \|x + \tilde{t}\| = \|x\|
\]
and hence the desired isometry.

Since the maps \(M(A(U)) \rightarrow \text{alg lim}_{T \in \mathcal{T}} \Gamma_b(T, A) \) are obviously compatible with the restriction maps \(M(A(U)) \rightarrow M(A(V)) \) for \(V \subseteq U \) dense open subsets of \(\text{Prim}(A) \), we get an injective *-homomorphism \(M_{\text{loc}}(A) \rightarrow \text{alg lim}_{T \in \mathcal{T}} \Gamma_b(T, A) \). We have to show that this map is surjective and for this, it suffices to check
that its image is dense. Given \(\varepsilon > 0 \) and \(s \in \Gamma_\mathcal{A}(T, \mathcal{A}) \), with \(T \in \mathcal{T} \), take a maximal family \(\{ U_i \}_{i \in I} \) of pairwise disjoint open subsets of \(\text{Prim}(\mathcal{A}) \) such that there are elements \(a_i \in M(\mathcal{A}(U_i)) \) with the property that \(||s_{T \cap U_i} - \mu_{U_i}(a_i)_{T \cap U_i}|| < \varepsilon \). If \(U = \bigcup_{i \in I} U_i \) is not dense in \(\text{Prim}(\mathcal{A}) \), there is a non-empty open subset \(W \) of \(\text{Prim}(\mathcal{A}) \) disjoint from \(U \), and, since \(T \) is dense, there is \(t_0 \in T \cap W \). Let \(W_1 \) be an open neighbourhood of \(t_0 \) with \(W_1 \subseteq W \) and \(a \in M(\mathcal{A}(W_1)) \) such that \(||s(t_0) - \mu_{W_1}(a)(t_0)|| < \varepsilon \). Using the continuity of \(s \) and of \(\mu_{W_1}(a) \), we find a smaller neighbourhood \(W_2 \) of \(t_0 \) such that

\[
||s_{T \cap W_2} - \mu_{W_2}(a)_{T \cap W_2}|| < \varepsilon.
\]

This contradicts the maximality of the family \(\{ U_i \}_{i \in I} \).

It follows that \(U \) is dense in \(\text{Prim}(\mathcal{A}) \), and the element \(a = \sum a_i \in M(\mathcal{A}(U)) \) (which exists by [1, Lemma 3.3.6]) satisfies \(||s_{T \cap U} - \mu_{U}(a)_{T \cap U}|| < \varepsilon \), as desired.

The following analogue of the above theorem holds for the injective envelope sheaf.

Theorem 7.7 For every \(C^*\)-algebra \(\mathcal{A} \), we have \(\mathcal{D}_\mathcal{A} \cong \mathcal{J}_\mathcal{A} \) as sheaves over \(\text{Prim}(\mathcal{A}) \).

Proof. Let \(U \in \mathcal{C}_{\text{Prim}(\mathcal{A})} \). Since \(\mathfrak{M}_\mathcal{A}(U) = M(\mathcal{A}(U)) \to I(\mathcal{A}(U)) = p_U I(\mathcal{A}) = \mathcal{J}_\mathcal{A}(U) \) defines a faithful natural transformation \(\mathfrak{M}_\mathcal{A} \to \mathcal{J}_\mathcal{A} \), Proposition 7.5 yields a faithful natural transformation \(\mathfrak{M}_\mathcal{J}_\mathcal{A} \to \mathcal{D}_\mathcal{J}_\mathcal{A} \). This provides us with the following commutative diagram

\[
\begin{array}{ccc}
M(\mathcal{A}(U)) & \longrightarrow & \mathfrak{M}_\mathcal{J}_\mathcal{A}(U) \\
\downarrow & & \downarrow \\
I(\mathcal{A}(U)) \end{array}
\]

in which the composition of the horizontal maps is injective, by the proof of Theorem 7.6. To show the injectivity of \(I(\mathcal{A}(U)) \to \mathcal{D}_\mathcal{J}_\mathcal{A}(U) \), it therefore suffices that every non-zero closed ideal in \(I(\mathcal{A}(U)) = I(M(\mathcal{A}(U))) \) must have non-zero intersection with \(M(\mathcal{A}(U)) \), which is, e.g., [3, Proposition 2.12]. As a result, we can consider \(\mathcal{J}_\mathcal{A}(U) \) as unital \(C^*\)-subalgebra of \(\mathcal{D}_\mathcal{J}_\mathcal{A}(U) \). The proof that \(\mathcal{J}_\mathcal{A}(U) \) is dense in \(\mathcal{D}_\mathcal{J}_\mathcal{A}(U) \) (and thus equal to \(\mathcal{D}_\mathcal{J}_\mathcal{A}(U) \)) follows verbatim the argument of the corresponding statement in the proof of Theorem 7.6 and is hence omitted.

It was observed in [10], see also [3, Section 4], that \(M_{\text{loc}}(\mathcal{A}) \) canonically embeds into \(I(\mathcal{A}) \). Here comes the sheaf-theoretic analogue of this result.

Corollary 7.8 Let \(\mathcal{A} \) be a \(C^*\)-algebra. Then the local multiplier sheaf of \(\mathcal{A} \) canonically embeds into the injective envelope sheaf, that is, \(\mathfrak{M}_{\text{loc}} \mathcal{A} \hookrightarrow \mathcal{J}_\mathcal{A} \).

Proof. It is noted in the above proof that we have a faithful natural transformation \(\mathfrak{M}_{\mathfrak{M}_\mathcal{A}} \to \mathcal{D}_\mathcal{J}_\mathcal{A} \). Combining this with Theorems 7.6 and 7.7 thus yields the result.

Acknowledgements The first-named author was partially supported by DGI MICIIN-FEDER MTM2008-06201-C02-01, and by the Comissionat per Universitats i Recerca de la Generalitat de Catalunya. A substantial part of this work was carried out during a research stay of the first-named author at the Pure Mathematics Research Centre of Queen’s University Belfast supported by the grant BE-DGR 2008BE1 00349 from the Generalitat de Catalunya.

The authors would like to thank the referees who made valuable comments improving the presentation of the material in this paper.

References

