Towards the development and design of in-situ faecal matter sensing platforms for aquatic environments.

Ciprian Briciu-Burghina, Fiona Regan
Marine and Environmental Sensing Technologies Hub (MESTECH), National Centre for Sensor Research (NCSR), School of Chemical Sciences, Dublin City University, Dublin 9, Ireland;
briciu_ciprian@yahoo.com

Abstract
Standard methods for the assessment of faecal contamination of water rely on laboratory-based techniques, which are time-consuming, labour-intensive and unable to be employed for continuous monitoring. Currently, 18 hours are required after sampling for the analysis to be performed. Our focus is to develop a remote sensing platform able to continuously monitor and provide near real-time measurements of Escherichia Coli (E. Coli) in environmental waters. The detection and quantification of E. Coli is studied using the activity of β-D-glucuronidase (GUD) marker enzyme.

Introduction
The microbiological quality of water is measured using indicator bacteria. These are bacteria, which themselves are not necessarily pathogenic, but indicate the presence of pathogenic bacteria due to the faecal contamination of water. With the implementation of Directive 2006/7 EC by 2015, the EU is changing the way the microbiological contamination of water is measured, interpreted and classified. The directive includes the change of faecal indicator bacteria to intestinal Enterococci and E. coli.

Escherichia Coli (E.coli)
• Best indicator for faecal contamination according to EPA and WHO.
• Almost exclusively associated with faecal sources.

Current work
• Working Principle
Measurement of E. coli in a water sample is achieved using Beta-D-glucuronidase fluorogenic (Scheme 1) or chromogenic substrates (Scheme 2); GUD catalyses the hydrolysis of β-D-glucuronides based substrates to corresponding aglycons and D-glucuronic acid.

The assay of the marker enzymes can be suitable for continuous monitoring: 97% of E.Coli strains are GUD positive, therefore in this study GUD is used as a marker enzyme for E. coli. When glucuronides are present they induce E.Coli’s synthesis of GUD, which is used to hydrolyze the sugars for use as energy or carbon sources.

Future Work

Acknowledgements
EC FP7 People Programme and the Marie Curie Foundation for funding this project.

Results

Graphs: Spectra recorded at 360 nm excitation wavelenght, showing the maximum emission at 445 nm for the commercial fluorophore (MU ST) and for the hydrolysed fluorophore (MU HY).

Graph 1. Hydrolsis rate at 44ºC, 37ºC and 20ºC and the correlation between GUD concentration and the intensity recorded at 445 nm.

Graph 2. GUD hydrolysis rate at 44ºC, 37ºC and 20ºC and the correlation between GUD concentration and the intensity recorded at 445 nm.

Graph 3. GUD serial dilutions hydrolysis rate, in the presence of 4-MUG, over 30 min at 37ºC.

Graphs: Spectra recorded at 360 nm excitation wavelenght, showing the maximum emission at 445 nm for the commercial fluorophore (MU ST) and for the hydrolysed fluorophore (MU HY).

Graph 1. Hydrolsis rate at 44ºC, 37ºC and 20ºC and the correlation between GUD concentration and the intensity recorded at 445 nm.

Graph 2. GUD hydrolysis rate at 44ºC, 37ºC and 20ºC and the correlation between GUD concentration and the intensity recorded at 445 nm.

Graph 3. GUD serial dilutions hydrolysis rate, in the presence of 4-MUG, over 30 min at 37ºC.

Figure 2. Graphs showing the correlation between GUD concentration and the intensity recorded at 445 nm.

Figure 3. A schematic of the integrated paired emitter-detector diode flow analysis device used for colorimetric detection (M. O’Toole, D. Diamond, Sensors 2008, 8, 2453-2479).

Acknowledgements
EC FP7 People Programme and the Marie Curie Foundation for funding this project.

Future Work

Acknowledgements
EC FP7 People Programme and the Marie Curie Foundation for funding this project.

Current work

results

Figure 1. Low temperature electron micrograph of a cluster of E. coli bacteria.

The assay of the marker enzymes can be suitable for continuous monitoring: 97% of E.Coli strains are GUD positive, therefore in this study GUD is used as a marker enzyme for E. coli. When glucuronides are present they induce E.Coli’s synthesis of GUD, which is used to hydrolyze the sugars for use as energy or carbon sources.

Future Work

Acknowledgements
EC FP7 People Programme and the Marie Curie Foundation for funding this project.

Abstract
Standard methods for the assessment of faecal contamination of water rely on laboratory-based techniques, which are time-consuming, labour-intensive and unable to be employed for continuous monitoring. Currently, 18 hours are required after sampling for the analysis to be performed. Our focus is to develop a remote sensing platform able to continuously monitor and provide near real-time measurements of Escherichia Coli (E. Coli) in environmental waters. The detection and quantification of E. Coli is studied using the activity of β-D-glucuronidase (GUD) marker enzyme.

Introduction
The microbiological quality of water is measured using indicator bacteria. These are bacteria, which themselves are not necessarily pathogenic, but indicate the presence of pathogenic bacteria due to the faecal contamination of water. With the implementation of Directive 2006/7 EC by 2015, the EU is changing the way the microbiological contamination of water is measured, interpreted and classified. The directive includes the change of faecal indicator bacteria to intestinal Enterococci and E. coli.

Escherichia Coli (E.coli)
• Best indicator for faecal contamination according to EPA and WHO.
• Almost exclusively associated with faecal sources.

Current work
• Working Principle
Measurement of E. coli in a water sample is achieved using Beta-D-glucuronidase fluorogenic (Scheme 1) or chromogenic substrates (Scheme 2); GUD catalyses the hydrolysis of β-D-glucuronides based substrates to corresponding aglycons and D-glucuronic acid.

The assay of the marker enzymes can be suitable for continuous monitoring: 97% of E.Coli strains are GUD positive, therefore in this study GUD is used as a marker enzyme for E. coli. When glucuronides are present they induce E.Coli’s synthesis of GUD, which is used to hydrolyze the sugars for use as energy or carbon sources.

Future Work

Acknowledgements
EC FP7 People Programme and the Marie Curie Foundation for funding this project.

Figure 1. Low temperature electron micrograph of a cluster of E. coli bacteria.

The assay of the marker enzymes can be suitable for continuous monitoring: 97% of E.Coli strains are GUD positive, therefore in this study GUD is used as a marker enzyme for E. coli. When glucuronides are present they induce E.Coli's synthesis of GUD, which is used to hydrolyze the sugars for use as energy or carbon sources.

Future Work

Acknowledgements
EC FP7 People Programme and the Marie Curie Foundation for funding this project.