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Digital pathology and the adoption of image analysis have grown rapidly in the last few years. This is lar-
gely due to the implementation of whole slide scanning, advances in software and computer processing
capacity and the increasing importance of tissue-based research for biomarker discovery and stratified
medicine. This review sets out the key application areas for digital pathology and image analysis, with
a particular focus on research and biomarker discovery. A variety of image analysis applications are
reviewed including nuclear morphometry and tissue architecture analysis, but with emphasis on immu-
nohistochemistry and fluorescence analysis of tissue biomarkers. Digital pathology and image analysis
have important roles across the drug/companion diagnostic development pipeline including biobanking,
molecular pathology, tissue microarray analysis, molecular profiling of tissue and these important devel-
opments are reviewed. Underpinning all of these important developments is the need for high quality tis-
sue samples and the impact of pre-analytical variables on tissue research is discussed. This requirement
is combined with practical advice on setting up and running a digital pathology laboratory. Finally, we
discuss the need to integrate digital image analysis data with epidemiological, clinical and genomic data
in order to fully understand the relationship between genotype and phenotype and to drive discovery and
the delivery of personalized medicine.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction to significantly change practice in pathology. So the initial enthusi-
While it is a common misconception that digital pathology and
image analysis is new, research on the use of computers and soft-
ware for analyzing and measuring cells or tissues in pathology date
as far back as the 1960’s and 70’s [1–4]. That’s over 40 years ago!
Clearly, the hardware and software systems then were limited in
their capability by comparison to today – but those studies were
the first to demonstrate the value that computer-based imaging,
cellular measurement and quantitation could play in pathological
diagnosis and discovery.

As computer hardware advanced rapidly in the 1980’s and
1990’s, there was considerable promise that image analysis would
be embraced as part of routine diagnosis in pathology. Some even
posited that the technology would ultimately replace human
pathologists. There was enormous investment in automated cytol-
ogy screening based on IA, with the promise that this could be used
to reduce cytology workload and improve diagnostic performance
across laboratories worldwide. Clearly this did not happen on the
scale predicted and even the most state of the art IA systems failed
asm for digital IA technology in pathology waivered with the focus
shifting to molecular pathology and the promise of diagnostic clas-
sification of tissue samples without the need for morphology.
Three principle factors changed that: (1) the recognition that
molecular pathology still relies heavily on tissue interpretation
(2) the drive for targeted therapies based on the presence or
absence of tissue-based markers and (3) digital scanning and
whole slide imaging (WSI) of entire glass slides in pathology.

The last factor has been hugely instrumental in the recent
upsurge in the adoption of image analysis again in both the
research and diagnostic sector. Whole slide imaging (WSI), and
associated viewing software, allows entire slides to be digitally
scanned at high resolution, reviewed by an experienced mor-
phologist, regions selected and image analysis applied to mea-
sure specific features. This potentially circumvents the need to
use traditional microscopy, manual selection, restricted image
capture using a CCD camera, transfer to an image analysis pack-
age and subsequent measurement of specific features. WSI can
bring these processes together, making image analysis much
more practicable and easy to adopt, while facilitating integration
into existing workflows in both research and primary diagnostic
laboratories.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymeth.2014.06.015&domain=pdf
http://dx.doi.org/10.1016/j.ymeth.2014.06.015
mailto:p.hamilton@qub.ac.uk
http://dx.doi.org/10.1016/j.ymeth.2014.06.015
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Commercial image analysis systems have grown dramatically in
recent years. This is likely to continue as the applications in discov-
ery, preclinical and clinical research continue to demand quantita-
tive methods, and as new diagnostic tools are translated into
diagnostic practice.

This article aims to provide readers with a rapid overview of the
current status of digital pathology and image analysis in biomarker
research and diagnostic practice, including practical advice on
adopting and developing these technologies.

2. Whole slide scanning and digital slides

2.1. Whole slide scanners

While the digital capture of individual images is still utilized
widely in the research and tissue diagnostic community, whole
slide scanning (WSI) is by far the most rapidly expanding means
of digital image capture in pathology. WSI allows the digital cap-
ture of the entire tissue sample at high resolution and with appro-
priate software allows the viewing of the slide at any position and
at any magnification. In this way it replicates what is achievable
with standard microscopy, but provides a range of additional
advantages – including facilitating image analysis.

Over recent years WSI instrumentation has become more
widely accepted and affordable in pathology research laboratories
and in primary diagnostic laboratories. However, given the pace of
development, there are likely to be further systems available from
new providers as the market continues to expand.

Most of the systems rely on two variants of image capture (1)
line scanning and (2) tile scanning, both of which generate multi-
ple high resolution images (in the form of lines or tiles) that are
subsequently aligned or stitched together to create a complete,
composite image of the original whole tissue section. Collecting
image data by either method is achieved by passing the slide
underneath the objective using a carefully controlled motorized
scanning stage or objective assembly. The image data is rapidly
recorded as the slide is traversed and image data stitched together
in real time.

In most systems the magnification at which the slide is scanned
can be adjusted. This is commonly either at 20� or 40�magnifica-
tion. Other select systems can scan under oil at 63� to provide
higher resolution systems. 20� scans are sufficient for most stan-
dard H&E remote viewing applications although some institutions
prefer to scan at 40� to ensure higher resolution. Fig. 1A shows a
whole slide scan of a pancreatic cancer, scanned at 40�magnifica-
tion where the image can be viewed at any magnification (Fig. 1B)
and where multiple slides can be viewed side by side for comparison
at any location or any magnification (Fig. 1C). Image analysis can
benefit from high resolution scans, particularly for applications that
involve nuclear detection and analysis. Applications such as in situ
hybridization (ISH) can be carried out at 40� with fluorescence
but may benefit from higher magnification scans in order to resolve
individual spots with chromogenic ISH. Haematology applications
may require 63� scanning (restricted to certain models of scanner)
in order to better resolve morphology and cell types. There is how-
ever a storage premium to pay for high resolution scans.

Accurate focus across large areas of tissue during the scanning
process is essential. In most instrumentation, this is achieved by
mapping the topography variations that inherently exist across
even a very thin tissue section, and rapidly adjusting the focus as
the scan is being created [5]. The reliability of this process has
improved dramatically over recently years and most systems can
automatically scan large batches of slides with no human interven-
tion at all.

Some WSI systems can also generate ‘‘multiplane’’ scans, which
capture image data along the z-axis (Fig. 2) as numerous large
images in a stack. With appropriate viewing software, this provides
the ability to navigate images in the z-plane, creating a digital
focus effect. This is particularly effective for cytology preparations,
where the ability to focus is extremely important.

Finally, many scanning systems now offer fluorescence WSI.
This makes use of the benefits of fluorescence (see Section 4.6)
while providing full slide scans, digitally capturing all relevant data
for storage, remote review and image analysis. There are specific
challenges associated with fluorescence WSI, not least of which is
focus. Fluorescence images tend to contain less contextual back-
ground information than brightfield images, and so provide less
data to support automated focus over large areas. However most
systems provide the ability to select defined regions of interest
for scanning, allowing large areas of slides to be successfully
scanned under fluorescence.

2.2. Image size and compression

Whole slide digital images are large. Scanning a typical tissue
section of 15 � 20 mm in size at 20� viewing magnification
(0.24 lm per pixel) can generate images as large as 3.6 GB in size.
Scanning at 40� will generate images as large as 14.5 GB. These
can be compressed to more manageable sizes (approx. 25:1 com-
pression or more), reducing the file size without impacting on
the visual quality of the image. Studies on the compression of
images in digital pathology [6] have shown that extensive image
compression can be applied without experts being able to visually
perceive differences in image quality. Even images with high com-
pression ratios can still be interpretable visually.

An important consideration, however, is whether image com-
pression can affect quantitative image analysis. Commercial sys-
tems routinely apply different compression methods and levels
as part of their standard configuration and so variation from one
instrument to the next could be detrimental. Basic studies have
shown that densitometric measurement (which is used routinely
for quantitative IHC image analysis) is more sensitive to compres-
sion that morphological measurement (e.g., nuclear size). Different
compression methods offered by different vendors can have very
different effects on image analysis fidelity [7]. Kieran et al. [7]
showed that with some methods of compression, 5% of the nuclei
were segmented in error, with an error rate that steadily increased
as compressed image quality decreased. Care therefore needs to be
taken to assess the impact of compression artifacts on image anal-
ysis. The impact of compression needs to be validated for each
study depending on the features calculated.

2.3. Scanning speeds and automation

Most instruments can now scan slides in 1–3 min, some with
the capability of automatically loading multiple slides without user
intervention. Some of the larger scanning devices can accommo-
date in excess of 300 slides, making them ideal for high volume
environments, including busy clinical diagnostic laboratories or
large scale tissue research facilities where large numbers of slides
need to be scanned and archived daily. Smaller scanners are avail-
able, which can scan from 1 to 10 slides in a single action. These are
ideal for specialist or incidental research requirements, for educa-
tional organizations that are scanning relatively small teaching col-
lections, or for diagnostic labs that want to use digital pathology
for infrequent second opinion or frozen section review.

2.4. Storage of digital slides

Given the size of digital slides and the numbers that are now
being routinely scanned in many research and diagnostic laborato-
ries, storage represents a significant element of the investment
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Fig. 1. Example of a digital slide scanned displayed within a digital slide viewer (PathXL Ltd). (A) Full slide overview. (B) High powered view of specific region of slide. (C) Side
by side viewing of different immunohistochemical markers on the same case.
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required for digital pathology. This investment might actually
exceed the cost of the scanner and associated software facilities
required for delivering a digital pathology programme! Not only
is basic storage essential for these large volume data sets but
backup facilities are also normally required, doubling the amount
of physical storage needed. Stathonikos et al. [8] (2014), who have
undertaken to routinely scan all slides coming into their laboratory
in Utrecht, and with approximately 500 slides scanned per day,
quote daily storage requirements of 175 GB and the need to store
5 TB of WSI data per month. The storage demands of scanning all
slides are such that this group are currently migrating to a hospi-
tal-wide object-based storage solution – a tiered system with scal-
able capacity to several petabytes – which can archive slides in
short-term, long-term and permanent storage environments.

Finally in order to ensure robust, reliable, long term storage that
will protect what might be valuable research or clinical data (in the
form of images) long term, certain storage standards need to be
addressed that meet acceptable criteria for data that may have to
be retrieved under law. The DPA white paper on archival and
retrieval in digital pathology [9] recommended that disk storage



Fig. 2. Multiplane scanning to capture z data and allow digital focusing through the sample.
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is configured in RAID 6 with 1 hot spare disk, ensuring that up to
three disk failures can occur without affecting data integrity.

Given the storage demands for organizations adopting digital
pathology, cloud-based managed storage solutions are also becom-
ing an acceptable model for managing high volume image data. This
approach removes the overhead for deployed servers and image
management locally. Here, storage is outsourced to third party ser-
vice providers that manage the backup and security of high volume
data on behalf of the organisation. In digital pathology, this often
provides better performance in terms of web-based access, viewing
speeds and reliability. It also facilitates rapid entry points into the
digital pathology market at lower cost for low volume activities.
Drawbacks include issues of data transfer speeds to the cloud and
additional cost when operating with high volumes of images.

3. The importance of software

While hardware is essential for the scanning of whole slides,
software is vital for delivering digital pathology applications. Soft-
ware underpins all of the functional capability of digital pathology –
from digital slide viewing, management and analysis – as well
as harnessing the power of workflow applications to support
processes across a range of activities.

3.1. Digital slide viewing

As stated previously, digital slide files are large and a single
image cannot usually be loaded into local computer memory in
its entirety. This therefore requires specialist software to allow dig-
ital slides to be viewed without loading or transferring the full
image file into memory or across the internet in one go. Most
digital slide images are stored as a tiled, multi-resolution image
format where incremental image resolutions are stored as part of
a pyramidal file structure (Fig. 3). Here, the lowest resolution rep-
resentation is at the peak of the pyramid. As one moves down the
pyramid, the resolution increases, broadening to the base of
the pyramid, which has the highest resolution representation of
the image. Each plane in the pyramid is represented by a set of dis-
crete image tiles which can be selectively loaded into view. This
means that with appropriate software the user can access a window
on the image showing the appropriate resolution (magnification)
and set of tiles (x–y position) at any point in the image pyramid,
obviating the need to download the entire image. This effectively
allows the image to be ‘‘streamed’’ to a viewer, under control of
the user, where the image can be navigated, magnification changed
and focus adjusted, only loading regions that are being viewed at the
time. This is particularly important for web-based viewing of images.
Here, dedicated image server software reads the image file requests
coming from a remote user via their web-browser, retrieving the
appropriate image data from file and serving that across the
internet using web services to a remote location.
3.2. Image management: databases, administration and workflow

Most digital pathology applications require the storage, man-
agement and recall of many hundreds of digital slides. Appropriate
database software is therefore necessary to manage these valuable
digital resources, together with unique identifiers and associated
metadata so that they can be archived, searched and retrieved
for review, analysis and reporting. For example in research, it
may be necessary for digital slides to be organized by study type,



Fig. 3. Digital slide images are represented as a tiled pyramidal structure to allow
on demand serving and viewing of images online, by serving image tiles at a specific
locations and different resolutions.
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label, tissue, trial number, experiment, etc. In addition, compre-
hensive resource database software in digital pathology permits
user management and permissions to be set by an administrator
facilitating restricted access to digital resources and functionality
based on access rights. This allows for digital slides from numerous
research studies or clinical trials to be stored within the database
but where access can be selective, allowing certain centres, groups
or individuals to view only certain slide sets. Only a small number
of vendors provide such comprehensive database solutions for the
effective management of digital slides and users, facilitating the
integration of digital pathology within very specific workflows that
can fast-track and speed up tissue-based research and discovery.

Using digital slides for research or clinical review also requires
extensive recording of other metadata that may be associated with
digital slides, e.g., unique identifiers for the slide image, bar codes,
scan operator, date of scan, tissue type, biomarker name, grade,
histological score, IHC score, clinical stage, treatment, survival,
response to therapy and potentially molecular data such as expres-
sion array data, mutation analysis, next generation sequencing, etc.
These data need to be stored in an integrated fashion linked to the
image reference in a database so that images and associated data
can be retrieved and analyzed together (see Section 8). User inter-
face software is therefore necessary to provide access to the inte-
grated dataset for search, review, analysis and reporting.

An integrated database also allows for the creation of workflow
software that can drive certain processes in digital pathology. For
example, having the ability to manage users, store slide identifiers,
patient information and biomarker scores and present these via a
user interface would be essential to streamlining large multicentre
clinical trials. Furthermore, managing multiple patient samples in
digital tissue microarray (TMA) biomarker experiments requires
an underlying database management system and workflow soft-
ware (see Section 3.3). These demonstrate the importance of hav-
ing a strong, centralized database-driven management platform to
support the wide range of applications in digital pathology.
3.3. Digital slide sharing for multisite collaboration and primary
diagnostics

One of the generic benefits of digital pathology is the ability to
share microscopic whole slide images between researchers and
pathologists electronically, avoiding the need to physically shift
glass between centres. The pathologist no longer needs to be in
the same room, building, organization or country as the glass slide.
Given the escalating importance of pathology in personalized med-
icine and biomarker discovery, particularly in solid tumours, digital
pathology is now allowing organizations to more efficiently man-
age their pathology services and support multisite integration
and collaboration [10]. This provides organizations with the ability
to either de-centralise or centralise their pathology services
depending on their specific requirements and needs.

Organisations can now outsource pathology services by scan-
ning slides centrally and distributing these to pathologists any-
where in the world for review, via web-based software. This has
distinct advantages for commercial organizations, where pathol-
ogy outsourcing is made easier and the cost of pathology services
can be driven down to the cheapest supplier, since geographic
location is no longer an issue. However, regulatory issues and qual-
ity remain key considerations. Remote access to digital slides also
has advantages for research organizations involved in large multi-
disciplinary studies where collaboration with distant centres is
necessary to access pathology skills.

Similarly, digital pathology can support centralization of
pathology services, where scanning can take place across multiple
geographic sites with pathologists reviewing these centrally. This
can be particularly important in large-scale multinational clinical
trials where centralized standardized pathological review is essen-
tial. Also important here is the ability to manage multiple scanning
devices at each centre and to have software that can support multi-
ple proprietary image formats generated by different scanners. In
all of these scenarios, software is essential for digital slide manage-
ment, the secure distribution of slides to remote pathologists, cen-
tralized review and reporting, and for tracking events during
complex tissue-based studies.

Tissue microarrays (TMAs) represent an vital means of evaluat-
ing and scoring the clinical utility of new biomarkers. While image
analysis has a role to play, many studies still rely on manual visual
interpretation for candidate biomarkers. Using appropriate digital
pathology software, complex TMA experiments can be managed
and carried out remotely. This has clear advantages in accessing
pathology skills outside an organization and the basic management
of TMA experiments benefits from delivering this through a dedi-
cated management interface (Fig. 4). Here, the software can lead
the user through the TMA map, presenting each tissue core via a
web-based viewer to the pathologists. Each core can be viewed
at multiple magnifications and the biomarker score entered via a
scoring interface by the user. The software keeps track of progress
through the TMA and can relocate to any position on the TMA map.
This demonstrates the utility of digital pathology in supporting tis-
sue-based biomarker experiments when software management
and workflow underpin the success of a study.

The use of digital pathology in clinical trials and for research-
only applications does fall under regulatory governance in some
areas of practice. In regulated research environments such as in
the pharmaceutical industry, in preclinical toxicity testing and in
clinical trials, Good Laboratory Practice and Good Clinical Practice
guidelines needs to be observed. In the USA and Europe, these tend
to concentrate on 21CFR11 or GMP Annex 11 compliancy, which
determine best standards for handing access to clinical data.

As digital pathology develops, there has been expanding interest
in adopting the technology for routine primary diagnostic tasks.
Increased speed of scanning, high volume automated slide loaders
and reduced cost of digital storage have made this a realistic possi-
bility. In diagnostic laboratories, digital pathology has a number of
clear benefits, including the ability to share images with peers any-
where in the world without shipping glass, being able to archive and
retrieve slides conveniently for subsequent digital review, the



Fig. 4. The interface with PathXL’s TMA Toolbox. This software allows web-based management of TMA experiments, scoring of tissue biomarkers and integration of scores
and clinic-pathological data.
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ability to get rapid pathological diagnostic opinions for intraopera-
tive decision making (e.g., frozen sections), the option to outsource
pathology expertise when expertise is not available locally and
where the geographical location of the expert pathologist is more
or less irrelevant, and the use of decision support tools and image
analysis for improved diagnosis. However, concerns still exist over
the safety of WSI and the use of digital slides for primary diagnosis.
Over the past number of years, several small studies have shown
that digital slides do provide a reliable medium for consistent pri-
mary diagnosis [11–14], however no large randomized controlled
trials have been undertaken. Currently, in the USA, whole slide scan-
ning devices have been categorized as class III devices by the FDA –
indicating that safety/efficacy is not proven and further work needs
to be done to prove the technology. This prohibits their use for pri-
mary diagnostic review, although use for second opinion and frozen
section diagnostics is permitted. To date, Europe has been more
open in its approach to digital pathology as a surrogate for the
microscope in primary diagnosis and several labs are now moving
ahead with plans to enable routine digital pathology, at least in
some areas of primary diagnostic pathology [8]. In any setting, it is
essential that laboratories validate and prove the safety of digital
pathology internally before adoption for clinical purposes. Recently,
the College of American Pathologists and Laboratory Quality Centre
produced comprehensive guidelines on validating whole slide
imaging in diagnostic pathology laboratories [15].
4. Image analysis: measuring pathology

It is well recognized that the visual interpretation of tissue
structures, IHC and other pathological tissue characteristics using
conventional microscopy is subjective. Many studies have shown
inconsistency in diagnostic decision-making in pathology, poor
reproducibility in grading disease and the variation that exists in
image interpretation [16,17]. Of course this does not at all imply
that pathologists are bad at what they do, but rather it highlights
the skills necessary to reliably make diagnostic decisions from
complex images and identify consistent tissue and cellular patterns
that can be used to classify disease in a way that is meaningful to
clinical management. But it remains subjective.

Image analysis is a very widely used term to describe the com-
puter-aided quantitative analysis of digital images (small. selected
images as well as WSI) in order to extract numerical data on the
underlying structures and intensities. This not only allows the
measurement of the underlying biological characteristics and pro-
cesses that would normally be visually assessed, but potentially
allows the detection of subvisual characteristics, not discernible
to the naked eye. As stated above, image analysis has been used
for many decades to better understand the microscopic alterations
that occur in disease and better characterize them through mea-
surement. The key advantages offered by image analysis are (i)
standardization through tissue measurement (2) automation and
(3) improved productivity and efficiency.

Computers now play a major role in extracting quantitative
data from digital images for the purpose of interpretation. This
covers most applications from simple measurements of length or
cell count to more complex approaches to measuring tissue struc-
ture using object identification and pattern recognition.

This section of the paper will review some of the key areas
where image analysis has had a role to play in pathology and
tissue-based research.
4.1. Measuring nuclear morphology, DNA content and augmented
visualisation

Many studies have used image analysis to support the quantita-
tive evaluation of nuclei as a key marker of diagnosis and prognosis
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in cancer. These have focused on the measurement of (i) morpho-
metric characteristics such as nuclear size and nuclear shape, (ii)
densitometric characteristics such as nuclear density and chroma-
tin disorganization and (iii) cell counts such as mitotic indices.
Many of these studies originally relied on ‘‘semi-automated’’ meth-
ods using computer-aided drawing devices to trace H&E stained
nuclei for size and shape measurements or to manually count
objects on screen using a mouse and cursor. While still a very valu-
able approach to image analysis, the trend has been to develop
more automated approaches to nuclear and cell identification, with
the associated challenges of accuracy and the need for validation. A
full range of cellular and cell count measurements can be extracted
from pathological images, providing objective data to support a
more objective diagnostic taxonomy. While morphometry has
been used for years, it is still relevant today for studies which
require more quantitative evaluation of tissue and objective iden-
tification of disease types.

For example, mitotic cell counts are an important criterion for the
grading of several tumour types. In breast cancer such counts have
been known for many years to provide prognostic information on
clinical outcome, and several authors have advocated the use of a
quantitative prognostic index using quantitative mitotic cells
counts in combination with other cytometric features [18,19]. Baak
et al. [19] proposed a simple mitotic activity index, in combination
with tumour size and lymph node status, as a powerful index of
prognosis and also as a means of identifying responders and non-
responders to chemotherapy [20]. The role for mitotic cell counts
continues in tumour pathology as does the drive to develop more
automated image analysis-based approaches. In 2013, a standard
image library of mitotic counts was used to test a range of mitotic
identification algorithms in pathology, and identified that this still
posed challenges in the image analysis community due to the diffi-
culty of automated identification of mitotic figures [21].

The use of DNA image cytometry on cell preparations or tissue
sections has been extensively explored in cancer. This uses digital
imaging to measure the optical density of stained nuclei to identify
and measure abnormal DNA content. Minor changes in DNA con-
tent can be identified in malignancy and have been advocated as
an objective approach to support diagnostic decision making in
pathology. DNA image cytometry has certain advantages over
DNA flow cytometry, in that tissue organization and context is
retained and specific focal lesions can be explored [22]. Work on
the use of DNA image cytometry in identifying lesions, such as dys-
plasia in Barretts Oesophagus, has shown real advantages in pre-
dicting clinical outcome [23,24].

Closely allied to DNA content has been the use nuclear densito-
metric information to evaluate chromatin organization within cell
nuclei. Again, subtle changes in chromatin disruption have been
shown to be strongly associated with early malignancy in a range
of tumour types, tumour progression, as a potential surrogate end-
point marker of clinical outcome [25] and are associated with
methylation and acetylation status in cancer [26].

One concept emerging from these studies is that of ‘‘augmented
visualization’’, i.e., the ability to extract quantitative data from
marked-up imagery and present these back to the pathologist visu-
ally. This can provide the pathologist with images that are much
more readily interpretable than standard H&E or IHC alone, provid-
ing them with the ability to ‘‘see’’ tissue characteristics that would
normally escape the naked eye. Fig. 5 shows an example of this in
prostate neoplasia, where image analysis of chromatin disorder
can help identify prostate intraepithelial neoplasia.

4.2. Measuring tissue architecture

In histopathological diagnosis, considerable information is con-
tained within the tissue architecture and the disruption that occurs
in diseased tissues. As with cellular analysis, image analysis can be
used to measure architectural changes in H&E stained samples in
much more precise, reproducible terms. Initially, analysis was con-
fined to manual measurements derived by using computer soft-
ware to hand-trace tissue structures. However, with advances in
image analysis and algorithms to automatically interpret complex
patterns, more advanced methods have been proposed. These
approaches using ‘‘computer vision’’ have been extensively
reported and are based on image understanding methods that
model the complex structures seen in tissue images and recon-
struct those to identify tissue compartments that can subsequently
be measured [27,28]. Some examples are given in Fig. 6 and Fig. 7.

Our ability to develop image understanding solutions in pathol-
ogy is going to be a significant future challenge in digital pathology
and image analysis. It also forms the basis of tumour tissue identi-
fication discussed later (Section 4.8). Implementing decision sup-
port solutions that can be used within diagnostic practice and
augmented visualization in pathology will require increasingly
complex imaging tasks that can decipher the content of the image
and return valuable new data. While the promise has been there
for many years, the technology is getting close to the point where
this could be a reality. This will require pathologists, computer sci-
entists and image analysts to combine their skills to derive new
innovative technologies that will drive machine vision and image
understanding in tissue pathology. While there remains consider-
able doubt about whether this can be achieved with sufficient
accuracy, the potential of this in diagnostic practice could be
enormous.

4.3. Quantitative immunohistochemistry (IHC)

Cellular proteins and the use of immunohistochemistry (IHC)
are extremely important as tools to identify disease-related single
biomarkers which can be used to stratify patients into clinically
important groups. These may be potential biomarker candidates
under investigation or may have already been shown to be of diag-
nostic/predictive value and are evaluated in routine diagnostic
practice by pathologists. Due to its widespread availability in diag-
nostic laboratories across the world, IHC represents a very popular
target technology for new biomarker development in patient strat-
ification and personalized medicine.

There is one key drawback of IHC for biomarker assessment. The
visual interpretation of chromogenic IHC expression is inherently
subjective and prone to error, even when carried out by experi-
enced pathologists. Studies on a range of IHC markers including
p53 [29] (McShane et al.), ER and PR [30] and Her2 [31] have
shown poor reproducibility between pathologists. Recent studies
on Ki67 highlight considerable interlaboratory variation in Ki67
evaluation [32,33], a tissue biomarker that is critically important
in breast cancer research and clinical assessment of patients. Most
tissue-based IHC markers that are approved for clinical use, come
with well-defined guidelines on sample preparation, pathological
interpretation and scoring. Nevertheless, the evaluations of mark-
ers such as Her2 IHC are known to be associated with error rates
of up to 20% [34]. Her2 evaluation in other settings such as gastric
cancer is also problematic [35].

Computerized image analysis provides the ability to use the
quantitative data inherent in a digital image to extract numerical
data on the density and distribution of IHC biomarker expression
within a tissue sample. Used appropriately, IA can provide impor-
tant objectivity and repeatability in biomarker studies, allowing
the identification of subtle changes in biomarker expression that
could have diagnostic, prognostic or predictive value. A variety of
image analysis toolboxes and general purpose algorithms are com-
mercially available which allow the quantitative measurement of
IHC markers. Few image analysis algorithms work ‘‘off the shelf’’



Fig. 5. Augmented visualization in prostate cell imaging, comparing benign prostatic hyperplasia (BPH) prostatic intraepithelial neoplasia (PIN) and prostate cancer (PCa).
Measuring the chromatin distribution quantitatively can be used to present colour coded nuclei indicating levels of chromatin disruption in prostate epithelial cells and help
distinguish PIN from similar benign and invasive counterparts.

Fig. 6. Shows automated measurement of nuclear stratification in colorectal
epithelium using tissue-based machine vision.

Fig. 7. Using image analysis and computer vision it is possible to measure tissue
and cellular organization. This figure shows the measurement of gland proximity,
shape and nuclear crowding for determining the grade of colorectal dysplasia.
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and there is invariably the need to configure algorithms for the
specific tissue type and biomarker under investigation. In experi-
enced hands, image analysis algorithms can be developed which
can reliably segment cellular compartments and extract quantita-
tive data of enormous value. However, in inexperienced hands,
image analysis can be very dangerous.
Generally the research approach is to build a solution in a com-
mercial package by adding together various image processing com-
ponents that in combination can provide data that works on the
biomarker of interest and, following validation studies, provides
reliable data. Validation is extremely important and will inevitably
involve review by experienced pathologists to ensure appropriate
regions of the images are being identified and that density thresh-
olds are set appropriately. When used appropriately, IA algorithms
can then be effectively used to identify cellular compartments and
measure the protein expression within these compartments
(Fig. 8). A range of studies have successfully used image analysis
to measure IHC across numerous biomarkers. This has been
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empirically shown to improve the reliability and reproducibility of
IHC scoring.

Most commercial systems provide general purpose image
analysis development platforms that allow algorithms to be
constructed for any candidate biomarker and where the
development and validation is in the hands of the user. However,
there are an emerging number of target-specific algorithms that
have been commercially tested and validated for a specific
purpose, and under controlled conditions are aimed to operate
without any user configuration. For example, several companies
(e.g., Aperio/Leica), Ventana Roche) have FDA 510 k clearance for
use of specific ER, PR, Her2 and Ki67 algorithms which can be oper-
ated by laboratories under defined conditions. These algorithms
are generally aligned to specific scanning instruments and must
be used exactly as specified by the manufacturer in order to be
compliant. They are now used routinely in many centers to
measure IHC expression in diagnostic pathology material. A good
example of this Her2 IHC, which acts as the companion diagnostic
marker for herceptin therapy in breast cancer. While this
represents an important tool for patient stratification, it has been
widely reported that at least 20% of Her2 evaluations by
pathologists could be inaccurate [34]. Bespoke image analysis
algorithms that can more precisely measure Her2 IHC in tissue
sections and Her2 image analysis has been extensively validated
by some laboratories. This has undergone FDA 510 k clearance in
USA and also equivalent CE Marking in Europe for clinical use
when restricted to certain IHC antibodies and specific scanning
platforms. Major organisations such as the American Society of
Clinical Oncology and College of American Pathologists have recom-
mended the use of Her2 IHC image analysis, provided it undergoes
internal laboratory validation [34]. Similar FDA/MHRA approval
has been given for the clinical use of ER, PR and Ki67 image analysis,
again as part of breast cancer profiling and selective patient therapy.
These and other tissue imaging algorithms are going to be key to the
effective development of new markers and the translation of these
markers into clinical practice and illustrate the pace at which digital
pathology and image analysis is being adopted.
4.4. Tissue microarray analysis

One key area where image analysis can significantly enhance
automation and efficiency is in tissue microarray (TMA) analysis.
TMAs represent an extremely effective platform for evaluating
Fig. 8. Image analysis for the quantitative measurement of IHC positivity in the nucleus,
panels show the image analysis detection and markup of positive regions (Definiens Tis
the clinical utility of new tissue and cellular biomarkers across
many hundreds of patient samples in a single assay. Convention-
ally each sample needs to be separately scored by eye to determine
the expression of a given biomarker. In large studies full TMA
datasets which could have many hundreds of tissue samples and
that numerous biomarkers need to evaluated, this soon becomes
impractical to do manually. Using IA, TMAs can be analyzed in a
completely automated fashion and this is emerging as an extre-
mely important method in biomarker research to fast-track discov-
ery, streamline workflow and produce objective, reproducible
biomarker data. Here image analysis automatically identifies the
individual tissue cores within the image, registers them to a TMA
map so that co-location is retained, analyses each tissue core using
a defined algorithm and generates objective data on expression
status within that tissue core. This provides quantitative results
on each of the hundreds of tissue cores on a slide and maps these
to each patient and their clinicopathological data. This is enhanced
when combined with high performance computing [36,37]. By par-
allelising analysis of individual TMAs across multiple computer
cores, the complex analysis of multiple biomarkers across large
multiplexed TMA experiments [37] is significantly speeded up
and can allow for genuine high throughput experimentation in
drug/companion diagnostic discovery. For diagnostic companies
wishing to validate candidate tissue biomarkers for patient strati-
fication across large cohorts of patients, high throughput image
analysis on TMAs is going to become a priority.
4.5. Tumour heterogeneity

Interestingly, in addition to average biomarker expression in
tissues, tumour heterogeneity is emerging as an important contrib-
utor to pathological misinterpretation and as a clinical indicator of
response to treatment. For example, Her2 heterogeneity in breast
cancer may account for the 30% of patients that fail to respond
to, or acquire resistance to herceptin therapy. However, visually
assessing the degree of heterogeneity in tissue samples is visually
challenging and compounds the difficulties of objectively scoring
the mean intensity of Her2 IHC protein expression by eye. Image
analysis provides the perfect tool to better measure spatial heter-
ogeneity of biomarker expression within a tissue sample. By mea-
suring IHC expression on a cellular level across the slide or by
gridding the tumour into distinct compartments, spatial heteroge-
neity can be visualized by color coding and mapping IHC image
cytoplasm and cell membrane. The top panel shows the original images. The lower
suestudio).
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analysis data across the tissue image or by measuring the variation
in IHC expression across the defined tissue compartments. Some
have developed algorithms, previously used for measuring ecolog-
ical heterogeneity, to assess IHC expression heterogeneity in breast
cancer. It may be that measuring heterogeneity of Her2 expression
in breast cancer using IA could act as a more efficient means of
stratifying and selecting patients for herceptin therapy [38].

4.6. Fluorescence imaging in digital pathology

4.6.1. Advantages of fluorescence over chromogenic dyes
Chromogenic stains gained popularity for immunodiagnostics

when the primary interest has been in assessing the presence or
absence of the stain, alongside visualization of tissue structure
[39]. However as attention shifts to the quantification of expres-
sion as an aid to predicting therapeutic response, it has proven to
be extremely difficult to visually distinguish between even a small
number of discrete levels of staining intensity – such as low, med-
ium and high; an issue that is further complicated by variations
among laboratories, slide scanners and computer monitors. While
objective measurement of pixel intensities by automated image
analysis as described above offers a partial solution, it should not
be considered a panacea; for example, widely-used DAB-based
stains are known to have differing spectral properties at high and
low intensities [40], which reduces the ability of computational
techniques such as colour deconvolution to recover accurate stain
intensities from red, green and blue channel data in a general sense
[41], while further uncertainty arises from the fact that the
dynamic ranges of such stains remains poor relative to the range
of protein concentrations found in vivo [40].

One approach to overcome these issues is to use fluorescence
imaging. Fluorescence images are formed from the detection of
photons emitted from fluorochromes/fluorescent molecules within
a specimen, whereby there is expected to be a linear relationship
between pixel values and the number of photons that struck the
detector. By matching filters to the emission spectra of the fluoro-
phores being used, it is largely possible to ensure that the informa-
tion contained within individual channels in the image already
corresponds to the markers of interest, without a need for stain
separation. In cases where this has not been possible and there is
a significant bleedthrough between channels (‘crosstalk’), spectral
deconvolution or linear unmixing may be applied to correct for
these errors [42]. Fluorescence imaging is also more suited to
‘multiplexing’, i.e., the assessment of multiple markers in a single
image [39,43].

4.6.2. Considerations for acquisition and interpretation
While more quantitative than chromogenic dyes, when it comes

to interpreting fluorescence data it should be kept in mind that
pixel values themselves are in arbitrary units, dependent not only
on the number of photons emitted by the sample (a function of
fluorophore concentration, illumination intensity and exposure
time), but also on many other factors, such as gain settings and
conversion factors inherent to the acquisition hardware [44]. Con-
sequently, drawing valid conclusions based on absolute pixel val-
ues depends on a detailed understanding not only of the physical
and spectral properties of the specific fluorochromes/fluorescent
molecules under consideration, but also of the imaging process
and settings [44,45]. In many cases in which intensity measure-
ments are deemed important, a more practicable approach is to
reduce variation as far as possible by standardizing the experimen-
tal setup and acquiring images with identical settings, and then
comparing only differences in relative intensities [45]. However
even here, care must be taken during acquisition and image stor-
age to ensure that the linearity between detected photons and
pixel values is not compromised. One major danger is data
‘clipping’, which occurs when the ‘true’ pixel value derived from
the detected photons exceeds the range permitted by the image
bit-depth (0–255 for an 8-bit image, 0–4095 for a 12-bit image),
so that the image contains only the closest valid value. It may
not be possible to discern visually that clipping has occurred from
looking at the image alone, but it is evident in the form of peaks at
either extreme when viewing the image histogram. Solutions to
overcome clipping include reacquiring the data with an increased
image bit-depth (at a cost of larger file sizes), or having reduced
the exposure time or microscope gain setting. The second main pit-
fall is the use of a lossy compression method (e.g., JPEG) when sav-
ing the acquired image, which will also modify pixel values and
thereby influence intensities, in addition to introducing artifacts
that may prohibit the detection of small structures [46]. Because
fluorescence signals fade over time, digital archiving – rather than
storage of the physical slide only for later re-scanning – is needed if
the data might be re-evaluated at a later date [47], but storing the
raw, uncompressed data can be problematic for whole slide scan-
ning if this produces prohibitively large file sizes. Nevertheless,
some reduction can be possible by discarding unused channels,
using lossless compression (e.g., LZW, lossless JPEG 2000), or stor-
ing only cropped regions of the entire dataset.

4.6.3. Fluorescence in situ hybridisation
Currently, the primary use of fluorescence in pathology is in

fluorescence in situ hybridization (FISH), which provides a view
of gene copy number rather than protein expression as normally
measured by IHC [48]. Although considered more time consuming
and costly, FISH has been shown to be a better predictor of trast-
uzumab response than traditional IHC scoring in retrospective
reports looking at breast cancer, and has therefore been recom-
mended for the evaluation of HER2 status in all cases when IHC
scoring has been deemed equivocal [48,49]. A rapid screening
approach to FISH analysis using tissue microarrays has been pro-
posed to improve throughput and reduce cost [50], while analysis
time may also be reduced by the integration of automated nucleus
identification and spot counting [51,52].

4.6.4. Fluorescence algorithms generally
As fluorescence slide scanners become more widely available

and file storage costs decrease, the advantages of fluorescence data
in terms of quantitation and multiplexing make it likely to expand
more into areas traditionally served by brightfield imaging. This
raises new challenges, in that specially-adapted image analysis
algorithms are required to deal with the differences in information
content within the images, in particular the unavailability of some
of the textural or contextual features familiar from IHC or H&E
stains. Recent studies have begun to address this by looking at
the identification of tumour regions based only on features and
relationships calculated from the cell nuclei detected in the DAPI
channel of fluorescence images [53,54], or registering images of
tissue sections imaged first with fluorescent markers and subse-
quently with H&E dyes [55].

Exploiting the additional possibilities of fluorescence in these
applications has perhaps been demonstrated most fully by the
AQUA (Automated Quantitative Analysis) set of algorithms [56]
[18]. The primary distinguishing feature of this approach is the
use of fluorescence data to produce an ‘AQUA score’, which is a
measure of co-localization calculated by dividing the signal inten-
sity in the channel corresponding to the marker of interest by the
compartment area (e.g., nucleus, cytoplasm or plasma membrane)
[57] [58]. Because this provides a continuous measurement of a
biomarker that makes use of intensity information relating to
expression, it becomes possible to identify potential subpopula-
tions amidst the data that would not be captured by a coarse-
grained classification of ‘low’ or ‘high’ staining, and provide a
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new viewpoint on biomarkers previously analyzed by standard
immunohistochemical evaluation [57–60].

4.7. Quantitative biomarker discovery and stratified medicine

Stratified medicine is central to the delivery of personalized
therapies in cancer and other diseases. ‘‘Stratification’’ is the pro-
cess of (i) identifying and separating different variants of a disease
into new, previously unrecognized, sub-types, (ii) developing new
therapies for these new patient subtypes and (iii) showing
improved clinical outcomes for patients identified and treated in
this more personalized format. Most of the drive towards person-
alized medicine has been underpinned by our better understand-
ing of disease at a molecular level. By identifying mutations and
their impact on molecular pathways and disease development, it
is possible to develop new antibodies or small molecule inhibitors
that can target these anomalies. However, the development of new
drugs for this purpose requires the concurrent development of
‘‘companion biomarkers’’ that can identify which patients will ben-
efit from the new drug. The drug discovery/development pipeline
must therefore be mirrored by an associated biomarker discov-
ery/development pipeline (Fig. 9) and this is presenting enormous
challenges to the pharmaceutical and diagnostics industries.

Digital pathology has very significant roles to play that map
across this drug/biomarker pipeline, particularly in developing
new drug/biomarker combinations for solid tumours. These are
illustrated in Fig. 9. This includes the role that digital pathology
is playing in biobanks (Section 4.9), analysis of biomarkers in TMAs
(Section 4.4) and the development of companion image analysis
algorithms. Companion image analysis algorithm development
represents a significant area of investigation and is used widely
in the identification and validation of new tissue biomarkers. Here
image analysis allow researchers to more precisely determine the
clinical utility of protein expression or ISH markers. This is essen-
tial in driving down costs associated with drug/diagnostic develop-
ment, in that candidate markers can be ruled in/or ruled out more
efficiently. Once developed for use in research, the potential then
exists to extend the application of imaging for the routine
evaluation of clinically valuable IHC or ISH markers. Again, a good
example of where this is happening is in HER2 IHC, where com-
mercially available FDA/MHRA approved algorithms can be used
for routine decision support and allowing for more accurate selec-
tion of patients for herceptin therapy. We expect to see many more
companion algorithms being developed for use in cancer and in
other diseases which provide more precise data on patient pheno-
type/genotype and their selection for targeted therapy.

4.8. Automated tumour detection and molecular pathology

Molecular pathology relies on identifying gene-specific anoma-
lies using PCR or sequence-based analysis of DNA or RNA extracted
from tissues. This is becoming extremely important in solid
tumours where molecular stratification of patients can be used to
determine effective treatment and improve patient outcomes.
Examples include EGFR mutations and ALK fusions in lung cancer,
KRAS and NRAS mutations in advanced colorectal cancer, and BRAF
mutations in malignant melanoma.

While these biomarkers are ‘‘molecular’’, they still strongly rely
on pathological examination of solid tumour tissue samples, anno-
tation for possible tumour cell enrichment and the estimation of %
tumour to ensure sample adequacy. Two aspects are important
here: (i) the percentage of tumour tissue as a fraction of the entire
sample and (ii) the percentage of actual tumour cells within the
diseased tissue, which invariably consists of a mixture of cell types.
Since the latter is the ultimate determinant of the tumour DNA
yield, evaluating the fraction of tumour cellularity is important in
ensuring the accuracy of molecular test results. However, assessing
this visually can be highly subjective and poorly reproducible. For
example, Smits et al. [61] have shown in H&E stained lung tumour
samples that there is gross variation in how pathologists report
tumour cell percentage in the same samples. Only 14% of the
observations were considered correct, with tumour cell percentage
being overestimated in 45% of cases. Differences between patholo-
gists were statistically significant and could be as high as 40 points
on the % scale for the same sample. Over a third of pathological
reviews deviated from the actual tumour cell count by as much
as 20 points on the % scale. Most importantly, of the samples that
actually fell below the crucial 20% threshold for direct sequencing,
over one third were overestimated by pathologists, raising the like-
lihood of false negative EGFR test results in these cases and subse-
quent serious consequences for patient treatment. Viray et al. [62]
have demonstrated similar findings in a multi-institutional diag-
nostic trial on colorectal cancer and KRAS testing. These studies
emphasize the difficulty of reliably estimating tumour cell percent-
age by eye and the complexities involved in subjective morpholog-
ical interpretation3. These issues are not just restricted to routine
molecular diagnostics, where misdiagnosis may result in treatment
failures and litigation. They also highlight the potential errors that
may arise in the use of nucleic acid-based diagnostic test from tis-
sue samples in research and clinical trials. Improvements are nec-
essary in the quality, standardization and automation of tumour
cell measurement and macrodissection. Without this, discovery,
validation and clinical trials of new companion diagnostics may
be flawed.

Recent technology is addressing this by using image analysis for
automated tumour markup and % cell calculations, automating this
process and providing more objective, reliable measurements for
tumour cell content (Fig. 10). The digital annotation can then be
used by the laboratory technician to macrodissect tissue samples.
By developing bespoke algorithms for each individual tumour type
and building this within a digital slide management workflow this
approach can now be used to support busy molecular pathology
laboratories and research organizations undertaking large clinical
biomarker trials that require tumour % thresholds or macrodissec-
tion for tumour cell enrichment.

4.9. Digital pathology and image analysis in biobanking

Biobanks aim to collect high quality biological samples linked to
well defined data sets and as a resource provide the critical bridge
to support translational research across a range of diseases. Mod-
ern biobanks provide the necessary tissue samples to develop
new companion diagnostic markers and are therefore essential in
translational medicine and the development of personalized
therapies [63] (Hewitt 2011).

In tissue centric biobanks, digital pathology has an emerging
role in sample archiving and sample retrieval. This ability to (i)
archive digital sides associated with physically stored tissue sam-
ples, (ii) retrieve these for rapid digital review ahead of sample
retrieval and (iii) to enrich the information associated with stored
samples through tissue and biomarker analysis is becoming central
to modern biobanking. Biobanks are also increasingly the guard-
ians of TMA constructs, which can be generated from the millions
of retrospective samples available in pathology laboratories across
the world. The integration of digital pathology imagery with phys-
ical samples and their linked clinical and pathological data repre-
sents the perfect example of how data integration is essential to
discovery [63].

As an example, the Northern Ireland Biobank routinely scans
and digitally stores all H&E and biomarker slides stored within
the biobank programme. Focusing on the prospective collection
samples across six cancer types, this currently equates to



Fig. 9. The role of digital pathology in drug development and companion biomarker discovery and validation.

Fig. 10. Automated annotation of tumour tissue in lung cancer using PathXL TissueMark software. This uses pattern recognition image analysis and here shows the tumour
boundary and ‘‘heat-map’’ of tumour rich areas. This approach enables rapid and reliable calculation of tumour area in real units, but also as a proportion of the entire tissue
section. It also quantitatively calculates the % tumour within the annotated region.
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approximately 3000 scanned slides and 2 Tb storage per annum.
Hosted on an secure imageserver (PathXL Ltd), this allows
researchers to review tissue histology and biomarker expression
ahead of sample retrieval and provides researchers with a pre-
existing rich source of image related data for their subsequent
work. In addition, the automated image analysis of biomarkers
within biobanking further enriches the data available to research-
ers. In the future, biobanks will increasingly host analytical data
derived from the tissue specimens including single biomarker
assays such as IHC and multivariate signatures derived from next
generation sequencing. Digital pathology and pathology informat-
ics software will be the enabling technology that supports these
developments and will put biobanks at the centre of developments
in personalized medicine.

5. Pre-analytical variables and controlling variation

While tissue measurement provides objective data on underly-
ing morphology, IHC expression or FISH signals, the reliability of
these data is in turn reliant on a range of processes that the tissue
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sample is subjected to prior to analysis. For example, it has been
shown that delay in tissue fixation can have a significant impact
on the IHC expression of certain proteins. Reduction in progester-
one receptor (PR) and oestrogen receptor (ER) expression by IHC
and HER2 FISH can be seen with delays in fixation >1 h [64,65],
with delays of >12 h having a major impact on expression status
(and therapeutic decision making) [64]. Current guidelines for ER
and PR IHC from American Society of Clinical Oncology/College of
American Pathologists recommend fixation within 1 h [34] – but
this is not always achieved in routine labs. The use of archival tis-
sue samples by research labs, therefore potentially introduces a
background variation in expression which is not due to the under-
lying biology of the tissue, but which is due to how it was handled
prior to analysis.

Delay in fixation is just one factor that can potentially influence
biomarker expression. These sample processing steps are called
pre-analytical variables and Table 1 shows a list of candidate vari-
ables, many of which are understudied and where the real impact
on analysis is largely unknown.

Controlling these factors within strict limits in a busy diagnostic
laboratory which is receiving samples from the operating room or
theatre without well-defined retrieval, delivery and handling pro-
tocols will be difficult. Biobanks on the other hand are established
with the sole aim of controlling many of these variables through
the prospective collection of tissue samples under strict standard
operating and quality procedures. The role of digital pathology in
biobanking has been discussed already in Section 4.9. But reducing
the noise associated with pre-analytical variables will also improve
the ability of image analysis to detect subtle, subvisual variations
in quantitative IHC or immunofluorescence – variations which
may be biologically or clinically important, and which would
otherwise be missed. The importance of this in TMA research has
been highlighted by Ilyas et al. [66].

An additional benefit of image analysis is that it can also be
used effectively to measure the variation introduced by pre-analyt-
ical variables. As an example, Bai et al. [67] demonstrated a signif-
icant impact of cold ischaemic time on antigenicity of a variety of
biomarkers by comparing matched biopsies (fast) and resection
(slow) specimens and using the AQUA fluorescence imaging tech-
nology. Subsequently, Neumeister et al. [68] showed how image
analysis of fluorescently labelled breast cancer panel on specifi-
cally prepared TMAs, could measure marker antigenicity as a func-
tion of time to fixation. While the core set of breast cancer markers
(i.e., ER, PR, HER2 and Ki67) were relatively robust over short selec-
tive delays in fixation, others were more susceptible. Further work
by this group has attempted to define a tissue quality index (TQI),
based on the use of image analysis to precisely measure the
expression of a chosen series of baseline biomarkers in breast can-
cer [69]. By quantitatively measuring a select set of variables
known to be positively and negatively associated with time,
new samples can be quality assessed by the ratio of these
Table 1
Selection of pre-analytical variables that potentially impact on the measurement of
tissue morphology and molecular markers (modified from [65]).

Pre-analytical variables

Warm ischaemia time
Time to fixation (warm and cold ischaemia times)
Fixation concentrations
Fixation pH
Fixation times
Size of sample
Dehydration and cleaning times
Section thickness
Temperature and duration of slide drying
Temperature and duration of paraffin block storage
measurements. This represents a potential step forward in the
use of image analysis for quality assessment in biobanking and ret-
rospective sample cohorts which rely on tissue quality for scientific
investigation.
6. Setting up a digital pathology core facility

Digital Pathology equipment and software are expensive, and
most organizations cannot afford to replicate resources across
multiple groups. For this reason, most digital pathology facilities,
in both private and public organizations, are centralized into
‘‘core facilities’’ that are available to a wide range of research
programmes.

There are a number of considerations necessary when setting
up core facilities. These are listed in Table 2 and discussed below.
6.1. Equipment

Hardware: As indicated previously, there are a variety of scan-
ning systems currently available on the market. Depending on
workload and available staff, a decision needs to be made on the
sophistication of the scanner required. Lower throughput laborato-
ries will be able to manage with cheaper low volume scanners,
while larger laboratories will require high throughput systems.
The latter also inevitably comes with staffing requirements. While
high throughput systems are generally described as automated,
there remains the need to stack the slide trays, manage issues that
may arise during the scanning process, coordinate the large num-
bers of digital images that are being generated on such systems
and quality control the results. Some systems can provide inte-
grated functions within a single system, such as multilevel scan-
ning and fluorescence. Other manufacturers separate functions
such as brightfield and fluorescence into different dedicated sys-
tems meaning that if both functions are required it is necessary
to purchase two separate systems. Other functions such as oil scan-
ning are very specialist and only offered by a small number of ven-
dors. Many fully equipped DP laboratories have several scanning
systems to cope with workload and varied applications, often from
different vendors.

Software: As discussed in Section 3, selection of appropriate
software is extremely important in running a digital pathology lab-
oratory. Two considerations are important when choosing soft-
ware. The first relates to the specific management and workflow
requirements of the laboratory. It is essential that the software
supports the workflow that laboratories operate – whether that
is for simple archiving, sharing or image analysis – and ensures
the secure, reliable and trackable management of digital slides. If
multiple scanners are in operation or where collaboration with
other centres is required, having software that can natively read
multiple image formats is important. Also, if possible the software
should be 21CFR11 (FDA) or GMP Annex 11 (EU) compliant. These
regulatory guidelines define the standards for commercial soft-
ware in regulated environments including security, validation, data
integrity, electronic signatures and audit, all of which are impor-
tant in healthcare-related research.

Storage: Given the size of scanned digital images, it is important
to consider at the outset the storage requirements for the labora-
tory. This can be expensive. Purchasing hardware for a lab requires
a scalable solution that can be added to over time. Small research
laboratories or biobanks might only scan 10 slides daily, equating
to approx. 3.5 Gb per day, 910 Gb per annum. Other large diagnos-
tic labs (discussed earlier) may generate 400 slides per day, gener-
ating 175 GB per day and over 5 TB annually. It also inevitably
requires internal IT manpower to manage the hardware, support
software and coordinate backup. This can prove to be expensive



Table 2
Checklist for establishing a digital pathology core facility.

Equipment

Scanning hardware selection
Digital pathology image management software
Image analysis software
Image storage including backup
Servers and network
Service contracts
People
Dedicated trained technical staff
Ethics, anonymisation and legal requirements
SOPS
Evidence of ethical approval
Slide tracking paperwork/software
Slide storage

Fig. 11. Demonstrates a model for data integration and analysis of tissue-based
imaging and genomics. This is based on the PICAN (Pathology Integromics in
Cancer) approach adopted by the authors.
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over time. Alternative solutions include cloud based services which
allow all of the storage, management and backup to be outsourced
to a specialist provider.

Servers and Network: Most laboratories require the need to
move digital data between the scanner, internal servers or cloud-
based storage systems. This requires networks that have sufficient
bandwidth to manage large data transfers without enormous
delays. Most universities can manage such data transfer rates,
but on occasions specialist provisions need to be made such as
dedicated, protected high bandwidth lines to the service provider
backbone. Many health care providers have much more limited
bandwidth provisions and this can pose significant problems when
serving images into and out of the institution.

6.2. People

Proper training of staff is essential in running a DP core facility.
The processes involved in scanning are relatively straightforward,
but troubleshooting, ensuring proper functioning of the instru-
ments and digital image quality is important. More challenging
applications, such as fluorescence or oil scanning, demand a higher
level of skill and experience. In our view, having a dedicated digital
pathology technician to look after instrumentation, slide handling,
digital file management, SOPs and paperwork has been essential.

The integration of image analysis within a digital pathology
program brings its own considerable requirements. This tends to
require individuals with specific skills and interests to develop
and deliver image analysis solutions, and to manage the data gen-
erated from such studies. If more ambitious goals are being set, in
which bespoke algorithms need to be developed for specific prob-
lems, it is often necessary to recruit computational scientists who
can write software and develop more complex solutions indepen-
dently or by using existing image analysis development platforms.

6.3. Ethics, anonymisation and legal requirements

A key consideration in offering a digital pathology service is to
ensure that all appropriate SOPs and protocols are in place to man-
age human tissue samples and that regional/national laws are
adhered to. In the UK, the Human Tissue Authority (HTA) has strict
regulations on handling, tracking and carrying out research on
human tissue samples. In the USA, Department of Health and
Human Services, HIPAA, CLIA and CAP oversee activities research
and clinical activities on human tissues. Ethical approval and
appropriate anonymisation of patients data is essential and should
be observed for core facilities undertaking to scan slides. Important
to this is removing any ‘‘identifiable’’ labels that might allow iden-
tification of patients. Most scanners automatically capture an
image of the slide label, which is stored with the slide. Care needs
to be taken that for the purposes of research, patients cannot be
identified from these labels by the end user. In clinical applications
of digital pathology it is essential that the pathologist can read the
slide labels clearly. Most DP scanners can switch off the slide label
function so that that information is not captured and this is recom-
mended in cases where the patient name is included in the barcode
label.

It is important that slides and associated digital slide images
can be appropriately tracked within a slide scanning service oper-
ation – and this is often a legal requirement (e.g., CLIA, HIPAA, CPA,
HTA). For small operations, this can usually be handled by using
paper-based methods or basic workflow software. For more sub-
stantial laboratories where numerous slides need to be processed,
scanned, catalogued, stored and returned. This can be facilitated by
bar code systems with automatic reading of bar codes by digital
pathology scanners and image file creation and archiving.
7. Integromics and image analysis

Digital pathology and the data derived from image analysis only
represents one facet of sample/patient characterization. In reality,
biomarker image analysis is valueless on its own without having
associated high quality clinical and pathological data against which
their diagnostic, prognostic or predictive power can be evaluated.
Similarly, the ability to integrate IA data with other diverse analyt-
ical data such as genomic and other tissue sample derived ‘‘omics’’
datsets will be essential for discovery, translational medicine and
targeted therapies. Unfortunately in most centres, these data exist
in different silos and the integration necessary to make full use of
these diverse datasets is challenging.

Converging imaging and molecular data allows for the com-
bined analysis of the relationship between phenotype and geno-
type. Data reduction on the basis of the genetic profiling alone
will allow for a clear interpretation of immunohistochemistry
markers in tissue-based digital pathology research allowing insight
into aberrant expression at the protein level. This, coupled to DNA
methylation and mRNA expression patterns, will proffer a more
reliable identification of robust biomarkers for potential therapeu-
tic targeting. Big-data approaches allow for a holistic interpretation
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of the genetic landscape and reveal the level of molecular complex-
ity in modalities such as tumour heterogeneity [70,71]. Statistical
data mining will be greatly enhanced across patients, cancers
and markers [72]. Understanding the relationship between pheno-
type and genotype in quantitative terms will allow us to provide a
more precise taxonomy of disease, in terms of drug targets,
companion biomarkers, patient stratification and personalized
medicine.

It could be that biobanks act as the centralized repository for
these data-sets, matched to high quality clinical samples, aimed
at supporting future tissue-based discovery. Similarly, molecular
pathology laboratories will also be driven to focus on combining
conventional histopathological review, quantitative image analysis
of tissue and cell phenotype and genomic analysis including DNA
sequencing and other methodologies to support diagnostic and
therapeutic decision making. Regardless of who drives this ‘‘inte-
gromics’’ initiative (Fig. 11), once an integrated approach is
adopted the benefits will be extraordinary.

References

[1] P.H. Bartels, L.G. Koss, J.J. Sychra, G.L. Wied, Acta Cytol. 22 (1978) 387–391.
[2] A.I. Spriggs, J. Clin. Pathol. Suppl. Coll. Pathol. 3 (1969) 1–7.
[3] O.A. Husain, J.H. Tucker, B.A. Roberts, Biomed. Eng. 11 (1976) 161–166.
[4] P.H. Bartels, G.L. Wied, J. Histochem. Cytochem. 22 (1974) 660–662.
[5] M.C. Montalto, R.R. McKay, R.J. Filkins, J. Pathol. Inform. 2 (2011) 44.
[6] D. McCleary, J. Diamond, D. Crookes, H. Grabsch, P.W. Hamilton, J. Pathol. 217

(2009) s13.
[7] D. Kieran, Y. Wang, D. Fennell, J. Quinn-O’Brien, Crookes D. WeiQi, P.W.

Hamilton, Poster session presented at 11th European Congress on
Telepathology and 5th International Congress on Virtual Microscopy, Venice,
Italy, 2012.

[8] Nikolas Stathonikos, Mitko Veta, André Huisman, Paul J. van Diest, in: J. Pathol.
Inform. 4 (2013) 15.

[9] (DPA) Digital Pathology Association. White Paper: Digital Pathology Archival
and retrieval Systems. <http://digitalpathologyassociation.org/_data/files/
Archival_and_Retrieval_in_Digital_Pathology_Systems.pdf>.

[10] S.J. Potts, Drug Discovery Today (2009).
[11] S. Al-Janabi, A. Huisman, S.M. Willems, P.J. Van Diest, Hum. Pathol. 43 (12)

(2012) 2318–2325.
[12] S. Al-Janabi, A. Huisman, A. Vink, R.J. Leguit, G.J.A. Offerhaus, F.J.W. ten Kate,

P.J. van Diest, J. Clin. Pathol. 65 (2) (2012) 152–158.
[13] S. Al-Janabi, A. Huisman, A. Vink, R.J. Leguit, G.J.A. Offerhaus, F.J.W. ten Kate,

P.J. van Diest, Hum. Pathol. 43 (5) (2012) 702–707.
[14] P.S. Nielsen, J. Lindebjerg, J. Rasmussen, H. Starklint, M. Waldstrøm, B. Nielsen,

Hum. Pathol. 41 (12) (2010) 1770–1776.
[15] L. Pantanowitz et al., Arch. Pathol. Lab. Med. (2013), http://dx.doi.org/10.5858/

arpa.2013-0093-CP.
[16] P.W. Hamilton, P.J. van Diest, R. Williams, A.G. Gallagher, J. Pathol. 218 (3)

(2009) 285–291.
[17] P1. Dalla Palma, P. Giorgi Rossi, G. Collina, A.M. Buccoliero, B. Ghiringhello, E.

Gilioli, G.L. Onnis, D. Aldovini, G. Galanti, G. Casadei, M. Aldi, V.V. Gomes, P.
Giubilato, G. Ronco, NTCC Pathology Group, Am. J. Clin. Pathol. 132 (2009)
125–132.

[18] Stenkvist et al., Cytometry 1 (1981) 287–291.
[19] Baak et al., Cancer 56 (1985) 374–382.
[20] P.J. Van Diest, J.P.A. Baak, Hum. Pathol. 22 (1991) 326–330.
[21] Roux Ludovic, Racoceanu Daniel, Loménie Nicolas, Kulikova Maria, Irshad

Humayun, Klossa Jacques, Capron Frédérique, Genestie Catherine, Naour Gilles
Le, Metin N. Gurcan, J. Pathol. Inform. 2013 (4) (2012) 8.

[22] Qin Huang, Yu Chenggong, Xiaoqi Zhang, BMC Clin. Pathol. 8 (2008) 5.
[23] J.M1. Dunn, G.D. Mackenzie, D. Oukrif, C.A. Mosse, M.R. Banks, S. Thorpe, P.

Sasieni, S.G. Bown, M.R. Novelli, P.S. Rabinovitch, L.B. Lovat, Br. J. Cancer 102
(2010) 1608–1617.

[24] Ming Fang, Edward Lew, Michael Klein, Thomas Sebo, Yingyao Su, Raj Goyal,
Am. J. Gastroenterol. 99 (2004) 1887–1894.

[25] Nor F. Rajab, Declan J. McKenna, Jim Diamond, Kate Williamson, Peter W.
Hamilton, Valerie J. McKelvey-Martin, Cytometry Part A 69 (2006) 1077–1085.

[26] J.A. Orr, P.W. Hamilton, Anal. Quant. Cytol. Histol. 29 (2007) 17–31.
[27] Stephen J. Keenan, James Diamond, W. Glenn McCluggage, Hoshang Bharucha,

Deborah Thompson, Peter H. Bartels, Peter W. Hamilton, J. Pathol. 192 (2000)
351–362.

[28] Peter W. Hamilton, Peter H. Bartels, Rodolfo Montironi, Neil H. Anderson,
Deborah Thompson, James Diamond, Sidney Trewin, Hoshang Bharucha, Anal.
Quant. Cytol. Histol. 20 (1998) 443.

[29] L.M. McShane, R. Aamodt, C. Cordon-Cardo, R. Cote, D. Faraggi, Y. Fradet, H.B.
Grossman, A. Peng, S.E. Taube, F.M. Waldman, Clin. Cancer Res. 6 (5) (2000
May) 1854–1864.

[30] Anthony Rhodes, Bharat Jasani, Andre J. Balaton, Am. J. Clin. Pathol. 115 (2001)
44–58.
[31] David Gancberg, Tero Järvinen, Angelo di Leo, Ghizlane Rouas, Fatima Cardoso,
Marianne Paesmans, Alain Verhest, Martine J. Piccart, Jorma Isola, Denis
Larsimont, Breast Cancer Res. Treat. 74 (2002) 113–120.

[32] M.Y. Polley, S.C. Leung, L.M. McShane, D. Gao, J.C. Hugh, M.G. Mastropasqua, G.
Viale, L.A. Zabaglo, F. Penault-Llorca, J.M. Bartlett, A.M. Gown, W.F. Symmans,
T. Piper, E. Mehl, R.A. Enos, D.F. Hayes, M. Dowsett, J. Natl Cancer Inst. 105
(2013) 1897–1906.

[33] Mitch Dowsett, Torsten O. Nielsen, Roger A’Hern, John Bartlett, J. Natl Cancer
Inst. 103 (22) (2011) 1656–1664.

[34] A.C. Wolff, M.E. Hammond, J.N. Schwartz, et al., Arch. Pathol. Lab. Med. 131
(2007) 18–43.

[35] M. Salto-Tellez, E.X. Yau, B. Yan, S.B. Foz, Arch. Pathol. Lab. Med. 135 (2011)
693–695.

[36] Yinhai Wang, David McCleary, Ching-Wei Wang, Paul Kelly, Jackie James, Dean
A. Fennell, Peter Hamilton, Cell. Oncol. (2010).

[37] Yinhai Wang, Kienan Savage, Claire Grills, Andrena McCavigan, Jacqueline A.
James, Dean A. Fennell, Peter W. Hamilton, PLoS One (2011), http://dx.doi.org/
10.1371/ journal.pone.0026007.

[38] S.J. Potts, J.S. Krueger, N.D. Landis, D.A. Eberhard, G.D. Young, S.C. Schmechel,
H. Lange, Lab. Invest. 92 (2012) 1342–1357.

[39] D.L. Rimm, Nat. Biotechnol. 24 (8) (Aug. 2006) 914–916.
[40] C.M. van der Loos, J. Histochem. Cytochem. 56 (4) (Apr. 2008) 313–328.
[41] A.C. Ruifrok, D.A. Johnston, Anal. Quant. Cytol. Histol. 23 (4) (Aug. 2001) 291–

299.
[42] A.R. Hibbs, G. Macdonald, K. Garsha, in: J.B. Pawley (Ed.), Handbook of

Biological Confocal Microscopy, 3rd ed., Springer, 2006, pp. 650–671.
[43] W. Schubert, B. Bonnekoh, A.J. Pommer, L. Philipsen, R. Böckelmann, Y. Malykh,

H. Gollnick, M. Friedenberger, M. Bode, A.W.M. Dress, Nat. Biotechnol. 24 (10)
(Oct. 2006) 1270–1278.

[44] J. Pawley, Biotechniques 28 (5) (2000) 884–886.
[45] A.J. North, J. Cell Biol. 172 (1) (Jan. 2006) 9–18.
[46] J.C. Waters, J. Cell Biol. 185 (7) (Jun. 2009) 1135–1148.
[47] M.B.K. Lambros, R. Natrajan, J.S. Reis-Filho, Hum. Pathol. 38 (8) (Aug. 2007)

1105–1122.
[48] A. Kovács, G. Stenman, Pathol. Res. Pract. 206 (1) (Jan. 2010) 39–42.
[49] D.G. Hicks, R.R. Tubbs, Hum. Pathol. 36 (3) (Mar. 2005) 250–261.
[50] D. Faratian, A. Graham, F. Rae, J. Thomas, Histopathology 54 (4) (Mar. 2009)

428–432.
[51] L.A. Brown, D. Huntsman, J. Mol. Histol. 38 (2) (2007) 151–157.
[52] Z. Theodosiou, I.N. Kasampalidis, G. Livanos, M. Zervakis, I. Pitas, K. Lyroudia,

450 (2007) 439–450.
[53] B. Lahrmann, N. Halama, H.-P. Sinn, P. Schirmacher, D. Jaeger, N. Grabe, PLoS

One 6 (12) (Jan. 2011) e28048.
[54] D. Padfield, B. Chen, H. Roysam, C. Cline, in: Proceedings of 1st Workshop on

Microscopic Image Analysis with Applications in Biology, 2006, pp. 86–92.
[55] A. Can, M. Bello, H. Cline, X. Tao, Biomed. Imaging 668 (2008) 288–291.
[56] R. Camp, G. Chung, D. Rimm, Nat. Med. (2002) 1323–1328.
[57] A. McCabe, M. Dolled-Filhart, R.L. Camp, D.L. Rimm, J. Natl Cancer Inst. 97 (24)

(Dec. 2005) 1808–1815.
[58] G.G. Chung, M.P. Zerkowski, S. Ghosh, R.L. Camp, D.L. Rimm, Lab. Invest. 87 (7)

(Jul. 2007) 662–669.
[59] S. Pozner-Moulis, M. Cregger, R.L. Camp, D.L. Rimm, Lab. Invest. 87 (3) (Mar.

2007) 251–260.
[60] M.A. Rubin, M.P. Zerkowski, R.L. Camp, R. Kuefer, M.D. Hofer, A.M. Chinnaiyan,

D.L. Rimm, Am. J. Pathol. 164 (3) (Mar. 2004) 831–840.
[61] Alexander J.J. Smits, J. Alain Kummer, Peter C. de Bruin, Mijke Bol, Jan G. van

den Tweel, Kees A. Seldenrijk, Stefan M. Willems, G. Johan A. Offerhaus, Roel A.
de Weger, Paul J. van Diest, Aryan Vink, Mod. Pathol. (2013).

[62] H. Viray, K. Li, T.A. Long, P. Vasalos, J.A. Bridge, L.J. Jennings, K.C. Halling, M.
Hameed, D.L. Rimm, Arch. Pathol. Lab. Med. 137 (11) (2013) 1545–1549.

[63] R.E. Hewitt, Curr. Opin. Oncol. 23 (2011) 112–119.
[64] T. Khoury, S. Sait, H. Hwang, R. Chandrasekhar, G. Wilding, D. Tan, S. Kulkarni,

Mod. Pathol. 22 (2009) 1457–1467.
[65] K.B. Engel, H.M. Moore, Arch. Pathol. Lab. Med. 135 (2011) 537–543.
[66] M. Ilyas, H. Grabsch, I.O. Ellis, C. Womack, R. Brown, D. Berney, D. Fennell, M.

Salto-Tellez, M. Jenkins, G. Landberg, R. Byers, D. Treanor, D. Harrison, A.R.
Green, G. Ball, P. Hamilton, Histopathology 62 (2013) 827–839.

[67] Yalai Bai, Juliana Tolles, Huan Cheng, Summar Siddiqui, Arun Gopinath, Eirini
Pectasides, Lab. Invest. 91 (2011) 1253–1261.

[68] V.M. Neumeister, V. Anagnostou, S. Siddiqui, A.M. England, E.R. Zarrella, et al.,
J. Natl Cancer Inst. 104 (2012) (2012) 1815–1824.

[69] Veronique M. Neumeister, Fabio Parisi, Allison M. England, Summar Siddiqui,
Valsamo Anagnostou, Elizabeth Zarrella, Maria Vassilakopolou, Yalai Bai, Sasha
Saylor, Anna Sapino, Yuval Kluger, David G. Hicks, Gianni Bussolati, Stephanie
Kwei, David L. Rimm, Lab. Invest. (2014), http://dx.doi.org/10.1038/
labinvest.2014.7.

[70] D. Gonzalez de Castro, P.A. Clarke, B. Al-Lazikani, P. Workman, in: Clin. Pharmacol.
Ther. 93 (3) (2013) 252–259, http://dx.doi.org/10.1038/clpt.2012.237.

[71] M. Gerlinger, A.J. Rowan, S. Horswell, J. Larkin, D. Endesfelder, E. Gronroos, P.
Martinez, N. Matthews, A. Stewart, P. Tarpey, I. Varela, B. Phillimore, S. Begum,
N.Q. McDonald, A. Butler, D. Jones, K. Raine, C. Latimer, C.R. Santos, M.
Nohadani, A.C. Eklund, B. Spencer-Dene, G. Clark, L. Pickering, G. Stamp, M.
Gore, Z. Szallasi, J. Downward, P.A. Futreal, C. Swanton, N. Engl. J. Med. 366 (10)
(2012 Mar 8) 883–892.

[72] P.R. Quinlan, A. Ashfield, L. Jordan, C. Purdie, A.M. Thompson, Breast Cancer
Res. 12 (2010) P27.

http://refhub.elsevier.com/S1046-2023(14)00237-0/h0370
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0375
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0380
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0385
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0390
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0395
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0395
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0400
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0400
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0400
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0400
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0400
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0730
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0730
http://www.digitalpathologyassociation.org/_data/files/Archival_and_Retrieval_in_Digital_Pathology_Systems.pdf
http://www.digitalpathologyassociation.org/_data/files/Archival_and_Retrieval_in_Digital_Pathology_Systems.pdf
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0735
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0420
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0420
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0425
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0425
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0430
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0430
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0435
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0435
http://dx.doi.org/10.5858/arpa.2013-0093-CP
http://dx.doi.org/10.5858/arpa.2013-0093-CP
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0445
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0445
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0740
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0740
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0740
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0740
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0455
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0460
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0465
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0470
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0470
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0470
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0475
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0745
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0745
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0745
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0485
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0485
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0490
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0490
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0495
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0500
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0500
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0500
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0505
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0505
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0505
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0510
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0510
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0510
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0515
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0515
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0520
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0520
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0520
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0525
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0525
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0525
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0525
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0530
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0530
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0535
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0535
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0540
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0540
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0755
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0755
http://dx.doi.org/10.1371/journal.pone.0026007
http://dx.doi.org/10.1371/journal.pone.0026007
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0555
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0555
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0560
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0565
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0570
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0570
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0575
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0575
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0575
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0575
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0580
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0580
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0580
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0585
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0590
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0595
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0600
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0600
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0605
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0610
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0615
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0615
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0760
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0630
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0630
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0765
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0770
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0650
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0650
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0655
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0655
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0660
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0660
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0665
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0665
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0775
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0775
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0775
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0675
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0675
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0680
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0685
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0685
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0690
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0780
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0780
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0780
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0700
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0700
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0705
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0705
http://dx.doi.org/10.1038/labinvest.2014.7
http://dx.doi.org/10.1038/labinvest.2014.7
http://dx.doi.org/10.1038/clpt.2012.237
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0720
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0720
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0720
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0720
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0720
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0720
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0725
http://refhub.elsevier.com/S1046-2023(14)00237-0/h0725

	Digital pathology and image analysis in tissue biomarker research
	1 Introduction
	2 Whole slide scanning and digital slides
	2.1 Whole slide scanners
	2.2 Image size and compression
	2.3 Scanning speeds and automation
	2.4 Storage of digital slides

	3 The importance of software
	3.1 Digital slide viewing
	3.2 Image management: databases, administration and workflow
	3.3 Digital slide sharing for multisite collaboration and primary diagnostics

	4 Image analysis: measuring pathology
	4.1 Measuring nuclear morphology, DNA content and augmented visualisation
	4.2 Measuring tissue architecture
	4.3 Quantitative immunohistochemistry (IHC)
	4.4 Tissue microarray analysis
	4.5 Tumour heterogeneity
	4.6 Fluorescence imaging in digital pathology
	4.6.1 Advantages of fluorescence over chromogenic dyes
	4.6.2 Considerations for acquisition and interpretation
	4.6.3 Fluorescence in situ hybridisation
	4.6.4 Fluorescence algorithms generally

	4.7 Quantitative biomarker discovery and stratified medicine
	4.8 Automated tumour detection and molecular pathology
	4.9 Digital pathology and image analysis in biobanking

	5 Pre-analytical variables and controlling variation
	6 Setting up a digital pathology core facility
	6.1 Equipment
	6.2 People
	6.3 Ethics, anonymisation and legal requirements

	7 Integromics and image analysis
	References


