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Machine Learning and 
Physical Unclonable Functions (PUFs)



What is a PUF?

PUF
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A PUF (Physical Unclonable Function) is a digital circuit that uses manufacturing process 
variations to generate a unique digital fingerprint.
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PUF Applications

Anti-cloning/Anti-tamper

Key generation/Memoryless key storage

Lightweight device authentication and unique identification 

Data Provenance/Incident Tracing

Client Server

1. Request Challenge

Client Server
2. Send Response

Client Server
3. Authenticate



PUF in Practice



Challenge-Response PUFS are vulnerable to ML attacks

Challenge Response
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U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror, J. Schmidhuber, W. Burleson, S. Devadas, “PUF 

modelling attacks on simulated and silicon data,” IEEE Trans Information Forensics and Security, vol. 8(11), pp.1876–1891, 2013.

Machine Learning Algorithm

Logistic Regression (LR) on Arbiter PUFs

LR Prediction Results



ML- Attack Resistant PUF Design Approaches

• Increase complexity of the PUF design 

- if too complex, PUF design is no longer a lightweight primitive

• Obfuscate the challenge/response (e.g. XOR Arbiter PUF) 

- Use a weak PUF 

- All XOR APUF shown to be susceptible to reliability based CMA-ES 

attacks (based on challenge-reliability pairs)

• Deception techniques 



ML- Attack Resistant PUF - Challenge obfuscation

The responses of the PicoPUFs are used 

to mask the original challenges Ci
Proposed 1-bit MPUF Design 

1-bit PicoPUF Circuit Design

Q. Ma, C. Gu, N. Hanley, C. Wang, W. Liu and M. O'Neill, "A machine learning attack resistant multi-PUF design on 

FPGA," 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju, 2018, pp. 97-104.

Arbiter-based multi-PUF (MPUF) design - utilises a Weak PUF to obfuscate the 

challenges to a Strong PUF

=> harder to model than the conventional Arbiter PUF using ML attacks.
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Most common ML-based attacks applied to PUF:

- Logistic regression (LR) 

- Covariance matrix adaptation evolution strategies (CMA-ES) 

Prediction rates for conventional Arbiter- PUF and 

proposed MPUF designs using LR
Prediction rates for conventional Arbiter- PUF and 

proposed MPUF designs using CMA-ES

ML- Attack Resistant PUF - Challenge obfuscation



ML- Attack Resistant PUF – Deception Protocols

• Device detects an adversary sending continuous 

authentication requests

• Generate some responses from a deceptive PUF 

design and others generated from real PUF. 

• Adversary will be deceived into deriving a fake PUF 

model from the collected data. 

• Lightweight and do not require error-correction or 

sophisticated cryptographic algorithms

C Gu, C.H. Chang, W. Liu, S. Yu, Q. Ma, M. O’Neill, A Modeling Attack Resistant Deception Technique for Securing 

PUF based Authentication , 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST)



The CMA-ES attack results for the proposed 

deception protocol by applying different challenge 

bit lengths, 64-bit and 128-bit, as well as utilizing 

different strategies (RNG and fake PUF). 

The LR attack results for the proposed deception 

protocol utilizing different strategies, RNG and fake 

PUF. The y-axis shows the achieved prediction rate 

of the LR attacks based on different percentages of 

fake information mixed with the training responses.

ML- Attack Resistant PUF – Deception Protocol



Machine Learning and 
Side Channel Analysis 



Side Channel Analysis (SCA)
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SCA-based attacks like DPA and 
CPA are well known since 1996 



Leakage of AES implementation

• Advanced Encryption Standard (AES) is safe 

in theory, but it is vulnerable under SCA.

• Non-linear and sensitive operation Sbox works 

with 8-bit sub-byte key.

• Sbox leaks hypothesis key via the relationship 

between the output value or its hamming 

weight, and side-channel information.

• The leakage can be trained using machine 

learning



Masking

 - a random mask is generated to conceal intermediate values, removing the 
correlation between the measurements and the secret data

Hiding

- aim is to make measurements look random or constant

- decreases the SNR only

- Timing (insert dummy operations, shuffling …)

- Amplitude (filters, pipelining …)

SCA Countermeasures against DPA/CPA



Evaluated AES implementation with SCA 
countermeasure (from ASCAD Database)

• AES implementation on 8-bit AVR ATMega 8515 microprocessor

• Two masks are used for

➢ Plaintext

➢ SBox

A-T. Hoang, N. Hanley, M.O’Neill, Plaintext: A Missing Feature for Enhancing the Power of Deep Learning in Side-Channel Analysis? 
IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2020(4), 49-85

A-T. Hoang, N. Hanley, A. Khalid, D. Kundi, M.O’Neill, Stacked Ensemble Model for Enhancing the DL based SCA. 19th International 
Conference on Security and Cryptography, SECRYPT 2022, Lisbon, Portugal, July 11-13, 2022, pages 59–68, 2022



Attack model

• Attack on the output of the 3rd SBox in the 1st round of AES

•  Classification uses the output value of SBox (256 classes)



CNN with Plaintext extension (CNNP) 

• Three convolutional layers

• The number of 
convolutional filters 
reduces from 512 to 128

• Maxpooling is used for 
feature finding

• Finding features are 
extended with Plaintext 

• Five fully-connected layers are used to compile the features extracted from the 
previous layers

• Over-fitting is prevented by using dropout



Attackers knowledge & experimental 
conditions
• Assumption about attacker:

➢ Knows plaintext / ciphertext

➢ Aware of SCA countermeasure but not aware of the detailed design and 
random mask value

➢ Can profile keys on the implementation 

•  Hypothesis keys are ranked using Maximum likelihood score

• Training is performed on VMware hosted Ubuntu with access to virtual 
NVIDIA GRID M60-8Q and M40-4Q GPUs.



Evaluation of CNNP models on ASCAD fixed 
key dataset

• CNNP model can reveal the 
secret key within 2 traces

• CNNP models relies on the 
bijection S[(.)  K] to reveal 
K without using traces 

Attack result of deep but narrow CNN model

(no Plaintext extension)

Attack result of references

Attack result of 

CNNP models



ML-based Countermeasures against ML-
based SCA

• Countermeasures based on adversarial attacks
 - add adversarial perturbations to the crypto implementation

• Reinforcement learning approach to construct low-cost hiding 
countermeasure combinations
 - finds the best combination of countermeasures within a specific budget

S.Picek, D.Jap, S.Bhasin. Poster: When adversary becomes the guardian–towards side-channel security with adversarial attacks. Proceedings of the 
2019 ACM SIGSAC Conference on Computer and Communications Security, pages 2673–2675, 2019

J. Rijsdijk, L Wu, G Perin, Reinforcement Learning-Based Design of Side-Channel Countermeasures, International Conference on Security, Privacy, and 
Applied Cryptography Engineering, LNCS 13162, pp 168-187, 2021



Machine Learning and 
Hardware Trojan Detection



Hardware Trojan

• Additional circuit inserted into an IC design at 

RTL or gate level for malicious purposes;

• Malicious modification of a circuit.

• Usually stealthy to escape verification and 

manufacturing test processes

• Detection is very difficult – there may be no 
Trojan-free reference for comparison

Hardware Trojan Detection



Hardware Trojan Detection Approaches

J. Francq, F. Frick, Introduction to hardware Trojan detection methods, Design, Automation 
& Test in Europe Conference & Exhibition (DATE), 2015.



Previous Work –HT Feature Extraction



DL-based HT Detection Methods (Data-driven)

.
❑ Data-driven HT detection that can effectively detect HTs without any prior  knowledge of the circuits 
❑ Natural language processing (NLP) technique for information encoding;

❑ DL-based classification models for HT detection (tested using LSTM and CNN models).

Deep Learning Module for HT Detection

Netlist Information Extraction Strategy

Netlists 

PCP Feature Traces

Pin-Level Graph Generator 

BFS-Searching Module 
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Pin-Level Structural Feature Extraction for HT Detection
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Shichao Yu, Chongyan Gu, Weiqiang Liu and Maire O’Neill, A Novel Feature Extraction Strategy for Hardware Trojan Detection," In Proc. 

IEEE Int. Symp. Circuits and Systems (ISCAS), pages 1-5, Seville, Spain, Oct. 2020

Shichao Yu, Chongyan Gu, Weiqiang Liu and Maire O’Neill, Deep Learning-based Hardware Trojan Detection with Block-based Netlist 

Information Extraction," In IEEE Trans. Emerg. Topics Comput., Oct. 2021



29

❑ 79% TPR, 99% TNR, 87% PPV and 99% NPV for combinational Trojan detection

(40 training samples/40 validating samples, 5 epochs, LSTM);

❑ 93% TPR, 99% TNR, 98% PPV and 99% NPV for sequential Trojan detection 

(40 training samples/40 validating samples, 5 epochs, LSTM)

DL-Based HT Detection System Evaluation
❑ Trust-Hub LEDA library containing 914 HT-infected netlist samples are utilized for evaluation.



Security in/for Approximate 
Computing



Approximate Computing

Approximate computing has emerged as a potentially 

preferable paradigm for energy-efficient applications that 

are error-tolerant

Example applications: AI, robotics, image and video 

processing, NLP



Approximate Computing Strategies

• Approximate computing can be applied to 
different levels, from hardware to 
software.

• A system with approximation should have 
the same security as its non-
approximation parts.

• However, the reality is that approximate 
computing may be even more vulnerable.

Approximate computing strategies and techniques



Security Threats in Approximate Computing

Security threats in Approximate Computing

Security attacks & solutions for 

Approximate Circuits and Memory

- SCA

- Hardware Trojans

- Approximate PUF

Using Approximate computing to 

improve security

- Advanced Crypto



Thank you 
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