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Secure Connected Devices

« Trusted Hardware
 PUF-based authentication
« Hardware Trojan Detection
« Side Channel Analysis
» Security & Approximate Computing
 Deep Learning in HW Security

« Advanced Crypto Architectures
« Post-quantum crypto architectures
* Hybrid quantum/PQC designs
« Homomorphic Encryption, IBE, ABE

« Password Authenticated Key
Exchange
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What is a PUF?

A PUF (Physical Unclonable Function) is a digital circuit that uses manufacturing process
variations to generate a unique digital fingerprint.
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Process Variations
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No two chips should give the same response when supplied with the same challenge.
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PUF Applications

Anti-cloning/Anti-tamper

Key generation/Memoryless key storage

Lightweight device authentication and unique identification

Data Provenance/Incident Tracing

Client

1. Request Challenge

»

<

Client

2. Send Response

Server

Client

A

3. Authenticate

\ 4

Server

Server




In Practice

Application Note: Zynqg UltraScale+ Devices

& XILINX

XAPP1333 (v1.7) May 28, 2021

External Secure Storage Using the PUF

Author: Mathan Menhorn

Summary

To store data in non-volatile memary (MVM) using a Zyng® UltraScale+™ device, data must be
stored externally and should be encrypted if it is confidential. All Zyng UltraScale+ devices have
a built-in physically unclonable function (PUF), which can generate a cryptographically strong,
device-unique encryption key that can be used in combination with the built-in advanced
encryption standard (AES) cryptographic core. This key cannot be read by a user, allowing for a
heightened level of key security. Only if a Zyng UltraScale+ device is provisioned to store the
PUF configuration information in eFUSEs and if Rivest-Shamir-Adleman (RSA) Authentication is
registered and enabled in eFUSEs, then the PUF's device-unique encryption key can be used to
encrypt and decrypt user data, which can then be stored and read from external non-volatile

memory.

Download the reference design files for this application note from the Xilinx® website. For
detailed information about the design files, see Reference Design.

Introduction

The PUF takes advantage of silicon variations unique to Zynq UltraScale+ devices to generate a
device-unigue encryption key that cannot be read by anyone, including the user. Along with
generating a unique encryption key, the PUF also generates the required helper data so that the
PUF can exactly regenerate the encryption key later. The details of the PUF are described in the
Zyng UltraScale+ MPSoC: Technical Reference Manual (UG1085) [Ref 1]. Normally, the PUF's
encryption key, referred to as the Key Encryption Key (KEK), is used for encrypting a user's
plain-text red key so that a user's red key can be stored encrypted in black key form in either
eFUSES or the boot header. The black encryption key is then decrypted using the PUF's KEK to
generate the red key, which in turn is used for decrypting the boot information during secure
boot. This use of the PUF is shown in Figure 1.
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Introduction

Over the last ten to twenty years, all major FPGA component providers have
invested in security features to protect their users’ proprietary and sensitive
designs. These features have existed for several generations of FPGA families,

and primarily focus on the encryption and later authentication of configuration bit
streams. Over time, many of these features have proven valuable while others have
shown to be to i attacks and probing techniques.

Just as the explosive growth of cloud computing, software as a service, and the
Internet of Things (loT) have introduced entirely new classes of threats to the
Internet {i.e., cyber security), the complexities of FPGA products and customer
designs have contributed to an increase in potential malicious attacks on FPGAs
and SoCs.

Despite FPGA company investment in new security capabilities and structures,

the fixed and predictable nature of the device configuration process itself

is an untapped area of security investment. In both SRAM and flash device
configuration processes, fixed state machines manage the order of authentication,
decryption, decompression, and actual device configuration. What is needed

is a failsafe, strongly authenticated but programmable security scheme, with
modern encryption blocks and hardware-based identity. Intel has recognized
these challenges and requirements across users of FPGA security features, and
responded with the design of the security architecture of Intel® Stratix® 10 FPGAs
and SoCs.

Introducing ‘configurability’ to configuration

Recognizing this FPGA design security issue, Intel Arria® 10 SoCs introduce the
Industry-unique capability for user-selected boot order. This method allows
specific applications, or configuration loads of the Intel Arria 10 SoC to select
whether the FPGA design or HPS system application configures first, and whether
configuration control of the second system is managed by the first. This scheme
gives the SoC designer a flexible, first order degree of control over the Intel Arria 10
SoC configuration parameters.

Intel Stratix 10 FPGAs and SoCs, built on Intel's 14 nm Tri-Gate transistor
technology, " offer the next of ny lected confi.

control with the Secure Device Manager (SDM). The SDM is a microprocessor

block available in all densities and variants of intel Stratix 10 FPGAs and SoCs

that provides a robust, secure, and fully authenticated configuration scheme.
Additionally, it allows users to custs device ¢ Otherad r
include config time, to singl 't upsets, reactive zeroization
of data as a security response, key management and update, and providing field
upgrades. This combination of features and flexibility in the SDM for Intel Stratix 10

Product Overview

Synopsys

Physically Unclonable Function (PUF)
Solution for ARC EM Processors

Highlights

¥ Secure and reliable PUF-based
crypto key generation

¥ Physical fingerprint and entropy
extraction from embedded SRAM

¥ Pure firmware implementation

I ging Synopsys Sect
technaology

» Optional high-performance
implementation with Synopsys
ARG CryptoPack acceleration

+ Chip identification based on Fuzzy
Identifier

Target Applications
kol

» Wearables

¥ Mobile

¥ Microcontrollers

» Sensors

Technology

¥ TSMC, UMC, Intel, Samsung

¥ 180nm, 150nm, 130nm, 80nm,
B65nm, 45nm, 40nm, 28nm,
18nm, 14nm

PUF for Integrated Circuits

Tiny wariations in a semiconductor manufacturing process make each transistor and
each piece of silicon unique. These variations are random and uncontrollable, so it
is impossible to make an exact clone of an integrated circuit IC), hence we refer to
thiz as a Physically Unclonable Function or PUF. These variations can be amplified
and measured with standard embedded Static Random-Access Memaory (SRAM)
cells and the startup behavior of on chip SRAM results in a unigue pattern that is
analogous to a fingerprint for the IC.
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Figure 1. Flow of PUF technology used for secure key management

Physically Unclonable Fi Solution for ARC EM Processors
The Physically Unclonable Function (FUF) solution from Intrinsic-ID is available

for DesignWare™ ARC® EM Processors and enables designers to extract a unique
device fingenprint from standard embedded SRAM. This fingerprint can be used as
a device identifier or as a cryptographic key. In the |atter cass, it effectively creates a
secure key vault without the need to add non-volatile memory (NVM) or a dedicated
security core. In combination with ARC EM Processor security options such as the
Enhanced Security Package and CryptoPack, the PUF solution provides a high-
performance, low-power security engine for protecting low-power IoT edge nodes
such as wearables or smart home devices.

Identification with Fuzzy-1D

The startup pattern from an SRAM PUF can be used to uniguely identify a chip.
Some of the bits in the pattern are unstable, so the matching has to be done using
software known as the Fuzzy Identifier algorithm. This algorithm converts the unique
but variable fuzzy identifier into & unique, collision-free fixed identifier comparable to
a chip Identifier like the Electronic Chip ID (ECID).




Challenge-Response PUFS are vulnerable to ML attacks
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ML- Attack Resistant PUF Design Approaches

* Increase complexity of the PUF design
- if too complex, PUF design is no longer a lightweight primitive

Obfuscate the challenge/response (e.g. XOR Arbiter PUF)
- Use a weak PUF

All XOR APUF shown to be susceptible to reliability based CMA-ES
attacks (based on challenge-reliability pairs)

« Deception technigues
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ML- Attack Resistant PUF - Challenge obfuscation

Arbiter-based multi-PUF (MPUF) design - utilises a Weak PUF to obfuscate the
challenges to a Strong PUF

=> harder to model than the conventional Arbiter PUF using ML attacks.
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ML- Attack Resistant PUF - Challenge obfuscation

Most common ML-based attacks applied to PUF:
- Logistic regression (LR)
- Covariance matrix adaptation evolution strategies (CMA-ES)
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ML- Attack Resistant PUF — Deception Protocols

» Device detects an adversary sending continuous

authentication requests

« Generate some responses from a deceptive PUF
design and others generated from real PUF.

« Adversary will be deceived into deriving a fake PUF

model from the collected data.

» Lightweight and do not require error-correction or
sophisticated cryptographic algorithms

C Gu, C.H. Chang, W. Liu, S. Yu, Q. Ma, M. O'Neill, A Modeling Attack Resistant Deception Technique for Securing
PUF based Authentication , 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST)
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ML- Attack Resistant PUF — Deception Protocol
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Machine Learning and
Side Channel Analysis
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SCA Countermeasures against DPA/CPA

Masking
- a random mask is generated to conceal intermediate values, removing the

correlation between the measurements and the secret data

Hiding

aim is to make measurements look random or constant
decreases the SNR only

Timing (insert dummy operations, shuffling ...)
Amplitude (filters, pipelining ...)
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Evaluated AES implementation with SCA
countermeasure (from ASCAD Database)

 AES implementation on 8-bit AVR ATMega 8515 microprocessor
e Two masks are used for
. Plaintext p;i=pi®m

- SBOX  SBox(x) = SBox(x @ m; ) @® m; o

A-T. Hoang, N. Hanley, M.O’Neill, Plaintext: A Missing Feature for Enhancing the Power of Deep Learning in Side-Channel Analysis?
IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2020(4), 49-85

A-T. Hoang, N. Hanley, A. Khalid, D. Kundi, M.O’Neill, Stacked Ensemble Model for Enhancing the DL based SCA. 19th International
Conference on Security and Cryptography, SECRYPT 2022, Lisbon, Portugal, July 11-13, 2022, pages 59-68, 2022



Attack model

« Attack on the output of the 3" SBox in the 15t round of AES

e (lassification uses the output value of SBox (256 classes)

SBox(p, @ k,)
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CNN with Plaintext extension (CNNP)

. CNNP with single convolutional filter kernel (size) version 1
Three convolutional layers (Simplified version of multiple Pol sizes combination)

The number of ) )

)

) ™~ 0 o) " "
convolutional filters gl |52 [R] 23] ]2 [ c g OERIEIEIEIE
reduces from 512 to 128 gl sl ellell el ®llsll®s = <] |SLIS|IEllEl)E
Maxpooling is used for 2 2l S| 2|5 El|S| =488 |&]&]|8]|8]]”
feature finding P e e S e e — — ‘
Finding features are Points of Interest (Pol) Plaintext feature embedding
extended with Plaintext _{ detection oL :

Five fully-connected layers are used to compile the features extracted from the
previous layers

Over-fitting is prevented by using dropout
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Attackers knowledge & experimental
conditions

 Assumption about attacker:
» Knows plaintext / ciphertext

> Aware of SCA countermeasure but not aware of the detailed design and
random mask value

> Can profile keys on the implementation
* Hypothesis keys are ranked using Maximum likelihood score

* Training is performed on VMware hosted Ubuntu with access to virtual
NVIDIA GRID M60-8Q and M40-4Q GPUs.
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Guessing Entropy
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Evaluation of CNNP models on ASCAD fixed
key dataset

Models comparison 500 runs WITH
Maximum Likelihood Score (MLS)
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Attack result of deep but narrow CNN model
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ML-based Countermeasures against ML-
based SCA

 Countermeasures based on adversarial attacks
- add adversarial perturbations to the crypto implementation

 Reinforcement learning approach to construct low-cost hiding

countermeasure combinations
- finds the best combination of countermeasures within a specific budget

S.Picek, D.Jap, S.Bhasin. Poster: When adversary becomes the guardian—towards side-channel security with adversarial attacks. Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, pages 2673—-2675, 2019

J. Rijsdijk, L Wu, G Perin, Reinforcement Learning-Based Design of Side-Channel Countermeasures, International Conference on Security, Privacy, and
Applied Cryptography Engineering, LNCS 13162, pp 168-187, 2021
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Hardware Trojan Detection

Production Chain Vulnerability
. . N
Specifications
Architecture Design
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Logic Synthesis w|=]| ¢ §||o
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Hardware Trojan

Additional circuit inserted into an IC design at
RTL or gate level for malicious purposes;

Malicious modification of a circuit.

Usually stealthy to escape verification and
manufacturing test processes

Detection is very difficult — there may be no
Trojan-free reference for comparison

Original Original

Circuit Payload net Circuit

\| Hardware
| Trojan




Hardware Trojan Detection Approaches

HT Protection

d/,\i

Post Production

Detection

/\

Prevention

m

Supportive

Secure

Design

Trusted

Production

Destructive Non-Destructive
Optical | | Run-Time || Test-Time
| Side Channel | |
Analysis

_ Logic :_
Testing

Design

<

J. Francq, F. Frick, Introduction to hardware Trojan detection methods, Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2015.
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Previous Work —HT Feature Extraction

* Most of the previous research extract HT features by statistical analysis of netlist

information.
* Most of them need knowledge driven approaches for the features selection and weight
adJ ustment. A SUMMARIZATION OF GATE-LEVEL HT FEATURES EXTRACTED IN
PREVIOUS RESEARCH
Feature y
Ref. Features Detection method
Type
[1] statistical | controllability,observability | K-means clustering
[2] statistical | controllability,observability Bagged Trees
— controllability, !
[3] statistical —— y_ ] K-means clustering
switching probability
I controllability,observability,
[4] statistical Y . y SVM
number of specific cells
[5] statistical LGFi, FFi, FFo, PI, PO SVM
[6] statistical LGFi, FFi, FFo, PI, PO Ensemble-learning
[7] statistical 11 numerical features Random forest
[8] statistical 11 numerical features Neural Networks
structural, two-level AONN gates,
[9] — = : Score-based
statistical number of specific paths
[1] H. salmani, “Cotd: Reference-free hardware Trojan detection and recovery based on controllability and [5] K. Hasegawa, “Hardware Trojans classification for gate-level netlists based on machine learning”
observability in gate-level netlist [6] Y. Wang, “Ensemble-learning-based hardware Trojans detection method by detecting the trigger nets”
[2] C. H. Kok, “Classification of Trojan nets based on scoap values using supervised learning” [7] K. Hasegawa “Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan detection using
[3] V. He “Trigger identification using difference-amplified controllability and dynamic transition probability for random forest classifier” ‘%:TSR;E:URE
hardware Trojan detection” [8] K. Hasegawa, “Hardware Trojans classification for gate-level netlists using multilayer neural networks” I T INFORMATION
TECHNOLOGIES

[4] X. Xie, “Hardware Trojans classification based on controllability and observability in gate-level netlist” [9] Q. Liu, “A hardware Trojan detection method based on structural features of Trojan and host circuits”



DL-based HT Detection Methods (Data-driven)

O Data-driven HT detection that can effectively detect HTs without any prior knowledge of the circuits
O Natural language processing (NLP) technique for information encoding;
U DL-based classification models for HT detection (tested using LSTM and CNN models).

Netlists
PCP Feature Traces

( Pin-Level Structural Feature Extraction for HT Detection

Encoded Feature Traces

P —————
Netlist N .
= t%l_ —— H Pin-Level Graph Generator) [ |nput Hidden Output
ate-Level Netlis
o | _
(Trojan-infected) || %Pin-levelNetIist Graph | Layer Layer Layer Inout Convolution Pooling gﬂ'}:&'i‘f;” Eﬁ:ﬁemd
npu
| _ | P layer layer ayers layers
] BFS-Searching Module Xt
Parameter: (in N logic levels) |
Logic Level=N, || | _ ve
Cell library file | | & Netlist Block I 1 +0 Q\O
| I —
| Pin-Level Feature Traces ) |
Extractor
| : CNN
Dataset for ;
Pin-level F T
) %HTdeteCtion ! & Pin-level Feature Traces |
N 1 - -
Labelled i fvel | (Norma,,HT,nstame Cooer ) ! Deep Learning Module for HT Detection
eature Traces

\————————— ' NLP-based Feature traces Encoding
Netlist Information Extraction Strategy

Shichao Yu, Chongyan Gu, Weigiang Liu and Maire O’Neill, A Novel Feature Extraction Strategy for Hardware Trojan Detection," In Proc.
IEEE Int. Symp. Circuits and Systems (ISCAS), pages 1-5, Seville, Spain, Oct. 2020

Shichao Yu, Chongyan Gu, Weigiang Liu and Maire O’Neill, Deep Learning-based Hardware Trojan Detection with Block-based Netlist
Information Extraction," In IEEE Trans. Emerg. Topics Comput., Oct. 2021



DL-Based HT Detection System Evaluation

SIT

U Trust-Hub LEDA library containing 914 HT-infected netlist samples are utilized for evaluation.
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HT . Num. of Components . Num. of Components
Types | Netlst o TENTTP | PP | NeWSt I TEN TP | FP
c2670_T093 | 776 | 4 5 0 s15850_T003 | 2984 | 4 3 1
s15850.T012 | 2985 | 3 5 0 c6288_T041 | 2416 | 0 9 0
- c2670_T016 775 1 6 1 c6288_T066 | 2416 | 0O ) 0
% c2670.T073 | 769 1 7 7 s1423.T0O08 | 480 | 3 4 0
- c2670.T054 | 776 | 0 6 0 s1423.T003 | 480 1 6 0
A c2670_T095 775 0 6 1 s15850_T009 | 2984 | 4 4 1
T c3540_TO87 | 1134 | 4 6 0 s1423.TO11 | 480 1 5 0
§ ¢3540_T005 | 1133 | 0 9 1 s1423.T005 | 480 1 4 0
= c3540_TO15 | 1133 1 7 1 s1423.T014 480 0 ) 0
;‘; c3540.T012 | 1129 | 0 5 5 s13207.T002 | 2309 | 1 4 1
% ¢3540.T017 | 1133 | 3 6 1 $35932_T015 | 6838 | 4 4 1
; 5315 T004 | 2307 | 1 7 0 s13207_T013 | 2310 | 5 6 0
= cH315.T047 | 2306 | 0O 8 1 $3H932_T006 | 6838 | 2 ) 1
g c5315.T064 | 2306 | 0 6 1 s13207.T014 | 2310 | 0 6 0
= 5315 T057 | 2306 | 0O 6 1 s35932_T005 | 6838 | 3 4 1
g s15850_T014 | 2984 | 3 1 1 s13207_T005 | 2310 | 0O 7 0
~§ ch315.T063 | 2306 | 0 8 1 $35932_T018 | 6838 | 5 4 1
o c6288_T049 | 2415 | 0 6 1 s13207_T011 | 2310 | 2 4 0
© c6288 T048 | 2416 | 0 6 0 $35932_T016 | 6838 | 1 5 1
c6288_T082 | 2416 | 0 5 0 s15850.T002 | 2985 | 0 7 0
Total TNR=0.9997, TPR=0.7929, NPV=0.9994, PPV=0.8775

HT . Num. of Components . Num. of Components
Types | Netlist T ENTTP | PP | VoSt rNTEN[TP | FD
s1423_T408 480 4 53 0 s15850.T417 | 2985 | 2 22 0
2 s15850_T439 | 2985 | 0 35 0 s13207_T462 | 2309 | 4 a7 1
E s15850.T450 | 2985 | 3 30 0 835932.T414 | 6839 | 7 76 0
55 81423 _T405 480 6 101 0 813207_T440 | 2310 1 20 0
~ s1423.T429 479 5 84 1 835932.T402 | 6836 | 5 68 3
g s1423.T418 | 478 | 5 | 61 2 s13207_T449 | 2310 | 0 18 0
E 81423 T412 480 1 41 0 835932.T421 | 6836 | 0 32 3
% s15850_T468 | 2984 | 2 18 1 813207_T484 | 2310 | 4 8 0
% 81423 _T407 480 1 16 0 835932_T413 | 6839 2 60 0
o s1423_.T411 | 480 1 19 0 s13207.T444 | 2310 | 1 16 0
= s1423_T421 480 5 19 0 835932 T408 | 6839 | 8 5] 0
= 81423_T422 480 1 19 0 s13207_T473 | 2310 | 2 10 0
§ 81423 T413 480 0 18 0 815850_T406 | 2985 9 40 0
& s15850_T434 | 2985 | 2 3 0 835932_T430 | 6839 | 0 21 0
g s13207_T425 | 2310 | 0O 41 0 835932_T435 | 6839 1 22 0
= 513207_T468 | 2310 1 22 0 s156850.T429 | 2984 | 9 92 1
g s15850_T475 | 2984 2 21 1 830932_T427 | 6839 0 22 0
g s13207.T461 | 2310 | 0O 21 0 s156850.T443 | 2983 | 0 33 2
g- s15850_T433 | 2985 1 20 0 835932_T411 | 6839 1 21 0
% s13207_T450 | 2309 | 7 | 93 1 s30932_T434 | 6839 | 0 18 0
Total TNR=0.9999, TPR=0.9346, NPV=0.9992, PPV=0.9892

0 79% TPR, 99% TNR, 87% PPV and 99% NPV for combinational Trojan detection

(40 training samples/40 validating samples, 5 epochs, LSTM);

U 93% TPR, 99% TNR, 98% PPV and 99% NPV for sequential Trojan detection

(40 training samples/40 validating samples, 5 epochs, LSTM)
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Security in/ffor Approximate
Computing



Approximate Computing

Approximate computing has emerged as a potentially

preferable paradigm for energy-efficient applications that
are error-tolerant

Example applications: Al, robotics, image and video
processing, NLP

IBM Researc hBlog Topics v Labs v  About

AI Hardware

Unlocking the Promise of
'Approximate Computing for On-

Chip AI Acceleration

Speed

Fast

Slow High

low Power

Exact High

Less Exact

Computation
Accuracy

Low

Area



Approximate Computing Strategies

Level

Software

Architecture

A

|
!
|
!
!
|
|
|
1
|
|
|
|
|
|
|
1
|
|
|
|
|
!
!
|
|
\J

Device

Strategies

Software
Approximation

Approximate
System

Approximate
Storage

Software
Hardware
Codesign

Approximate
Arithmetic
Circuits

Conditional
Circuits

L ]
4

Techniques

Loop perforation

Precision scaling

Using Program versions of different accuracy
Data sampling

Approximate accelerators
Programmable processors
Unreliable emerging technologies
Memory access skipping

Refresh rate reducing
Voltage scaling
Inexact read/write

Framework
Libraries
Compilers

Approximate adders
Approximate multipliers
Approximate dividers
Approximate FFT
Approximate CORDIC

Voltage overscaling
Skipping or pruning

Approximate computing strategies and techniques

* Approximate computing can be applied to
different levels, from hardware to
software.

* A system with approximation should have
the same security as its non-

approximation parts.

 However, the reality is that approximate
computing may be even more vulnerable.
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Security Threats in Approximate Computing

yelu2(13seunty yelu2019security

Malicious

Voltage

Voltage :

Modification

Incorrect
Refresh Rate

Overscale

Overscale

Privacy_leakage_approx_ad
yelu2019zeourity ders_2018

Approximate Circuits .
PP Approximate Storage
H wolage_scaing_SRAM2011
. A:‘:'ﬂp r?:lTate Appl’ﬂ}d mate volage_scaling_SRAM_video2011
Apprommate Adder uitiplier SRAM eterogensous_SRAM_sizing2012
gupta_low-power_2013 [bibkey: voltage _scding_AC_2015]
shafigue_low_201% AC_sram_dynamic_snergy2014 Ap FI’O)Ci mate
yang_approximate_2013 DRA M
ye_reconfiguration-oriented_2013 . i Ap proxi mate . —
L] a ox
PP fD::(Imat'E PO different_refregsﬁ_?grbe_ﬁpptux__DRAM_2G:I 1
Divider Appros_storage, 2013 lucas2014sparkk_dram_hw

Voltage
Modificatio

Side Channel Reverse Hardware
Analysis Engineering Trojans

De-anonymisation

yelu2019secunty

approx_DRAM_fingerprint_2015
sedu ity AC survey 2018

* Attack models *

Security threats in Approximate Computing

secu ityAC survey 2018 seu ntyAC survey 20138

info_hiding_AC_2019

Potential affected
application

Potential attack Existing affected

maodels application

Security attacks & solutions for
Approximate Circuits and Memory

- SCA
- Hardware Trojans
- Approximate PUF

Using Approximate computing to
Improve security

- Advanced Crypto

CENTRE
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