Aerofoil Optimisation Using CST Parameterisation in SU^2

Philip Hewitt, Simão Marques
Advanced Aero Concepts, Design and Operations

School of Mechanical and Aerospace Engineering
Queen’s University Belfast
Outline

- Methods and Key Concepts
- Alternative Parameterisations in SU^2
- Preliminary Results
- Conclusion
- Future Work
Outline

- Methods and Key Concepts
- Alternative Parameterisations in SU^2
- Preliminary Results
- Conclusion
- Future Work
Class-Shape-Transformation Method

\[\zeta(\phi) = C_{N_2}^{N_1}(\phi)S(\phi) + \phi \Delta \zeta_{te} \]

Class Function

\[C_{N_2}^{N_1} = \phi^{N_1}(1 - \phi)^{N_2} \]

Shape function

\[S(\phi) = \sum_{i=0}^{n} A_i S_i \]
Class-Shape-Transformation Method

- Series of component shape functions
Class-Shape-Transformation Method
Surface Modified through choice of weights

\[S(\phi) = \sum_{i=0}^{n} A_i S_i \]
Sensitivity Analysis

Adjoint Method

- Gradients required for optimisation
- Finite differences commonly used
- Cost proportional to number of design variables
- Cost can be unacceptable for high fidelity models
- Adjoint method provides an efficient alternative
- Independent of number of design variables
Developed by Stanford University
Open source
Freely-available
Primarily focused on aerodynamic shape optimisation
Incorporates Adjoint method for efficient gradient evaluation
Gradients made readily accessible
Outline

- Methods and Key Concepts
- Alternative Parameterisations in SU^2
- Preliminary Results
- Conclusion
- Future Work
Incorporating \(\text{CST} \) into \(SU^2 \)

\[
\begin{bmatrix}
\frac{\partial f}{\partial A_1} \\
\frac{\partial f}{\partial A_2} \\
\vdots \\
\frac{\partial f}{\partial A_n}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial x_1}{\partial A_1} & \cdots & \frac{\partial x_m}{\partial A_1} \\
\vdots & \ddots & \vdots \\
\frac{\partial x_1}{\partial A_n} & \cdots & \frac{\partial x_m}{\partial A_n}
\end{bmatrix} \begin{bmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} \\
\vdots \\
\frac{\partial f}{\partial x_m}
\end{bmatrix}
\]

- \(\frac{\partial f}{\partial A_i} \) - Gradient
 \[i = 1, \ldots, n; \quad j = 1, \ldots, m \]
- \(\frac{\partial f}{\partial x_j} \) - Surface Sensitivities
- \(\frac{\partial x_j}{\partial A_i} \) - Geometric Sensitivities
Incorporating \textit{CST} into \textit{SU}^2

\[
\begin{bmatrix}
\frac{\partial f}{\partial A_1} \\
\frac{\partial f}{\partial A_2} \\
\vdots \\
\frac{\partial f}{\partial A_n}
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial x_1}{\partial A_1} & \cdots & \frac{\partial x_m}{\partial A_1} \\
\vdots & \ddots & \vdots \\
\frac{\partial x_1}{\partial A_n} & \cdots & \frac{\partial x_m}{\partial A_n}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} \\
\vdots \\
\frac{\partial f}{\partial x_m}
\end{bmatrix}
\]

- \(\frac{\partial f}{\partial A_i}\) - Gradient \(i=1, \ldots, n\)
- \(\frac{\partial f}{\partial x_j}\) - Surface Sensitivities \(j=1, \ldots, m\)
- \(\frac{\partial x_j}{\partial A_i}\) - Geometric Sensitivities
Incorporating \textit{CST} into \textit{SU}^2

\[
\frac{\partial f}{\partial x_j} - \text{Surface Sensitivities}
\]

Adjoint Surface Sensitivities

Sensitivity

\((x/c)\)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lower upper
Incorporating \textit{CST} into \textit{SU}^2

\[
\begin{bmatrix}
\frac{\partial f}{\partial A_1} \\
\frac{\partial f}{\partial A_2} \\
\vdots \\
\frac{\partial f}{\partial A_n}
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial x_1}{\partial A_1} & \cdots & \frac{\partial x_m}{\partial A_1} \\
\vdots & \ddots & \vdots \\
\frac{\partial x_1}{\partial A_n} & \cdots & \frac{\partial x_m}{\partial A_n}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} \\
\vdots \\
\frac{\partial f}{\partial x_m}
\end{bmatrix}
\]

- \(\frac{\partial f}{\partial A_i} \) - Gradient
- \(\frac{\partial f}{\partial x_j} \) - Surface Sensitivities
- \(\frac{\partial x_j}{\partial A_i} \) - Geometric Sensitivities

\(i=1,\ldots,n; \ j=1,\ldots,m \)
Incorporating \textit{CST} into SU^2

\[\frac{\partial x_j}{\partial A_i} - \text{Geometric Sensitivities} \]

\[
\left(\frac{dx}{dA} \right)_{j,i} = \left(\frac{\partial x_j}{\partial A_i} n_x + \frac{\partial y_j}{\partial A_i} n_y + \frac{\partial z_j}{\partial A_i} n_z \right)
\]
Incorporating CST into SU^2

\[
\begin{bmatrix}
\frac{\partial f}{\partial A_1} \\
\frac{\partial f}{\partial A_2} \\
\vdots \\
\frac{\partial f}{\partial A_n}
\end{bmatrix}
=
\begin{bmatrix}
\frac{\partial A_1}{\partial x_1} & \cdots & \frac{\partial A_1}{\partial x_m} \\
\vdots & \ddots & \vdots \\
\frac{\partial A_n}{\partial x_1} & \cdots & \frac{\partial A_n}{\partial x_m}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} \\
\vdots \\
\frac{\partial f}{\partial x_m}
\end{bmatrix}
\]

- $\frac{\partial f}{\partial A_i}$ - Gradient
- $\frac{\partial f}{\partial x_j}$ - Surface Sensitivities
- $\frac{\partial x_j}{\partial A_i}$ - Geometric Sensitivities

\[i=1,\ldots,n; \quad j=1,\ldots,m\]
Outline Methodology CST in SU^2 Results Conclusion Future Work

Gradient Comparison

\[\frac{\partial f}{\partial A_i} \] - Gradient

Drag Gradients

Design Variable

Gradient

phewitt04@qub.ac.uk - Aerofoil Optimisation Using CST Parameterisation in SU^2
Outline

- Methods and Key Concepts
- Alternative Parameterisations in SU^2
- Preliminary Results
- Conclusion
- Future Work
Initial Conditions for NACA0012 optimisation:

- $M_\infty = 0.8$
- $\alpha = 1.25^\circ$
- $f = \text{min}(C_d)$
- $C_l > 0.33$
- $C_m > 0.034$
- $nDV = 8$
Inviscid Aerofoil Optimisation

(a) Initial

(b) Final
Drag Convergence

Design Cycles

Drag Coefficient, C_d

Design Cycles

Drag Coefficient, C_d

Hicks–Henne
CST

phewitt04@qub.ac.uk - Aerofoil Optimisation Using CST Parameterisation in SU^2

20/26
RAE2822 optimisation:

- $M_\infty = 0.729$
- $\alpha = 2.31^\circ$
- $f = \min(C_d)$
- Reynolds n. = 6×10^6
- $nDV=8$
- initial wall spacing = 1.0×10^{-5}
- Total elements = 22842
Viscous Aerofoil Optimisation

(a) Initial

(b) Final

phewitt04@qub.ac.uk - Aerofoil Optimisation Using CST Parameterisation in SU^2
Drag Convergence

Design Cycles vs. Drag Coefficient, C_d
Conclusion

- *CST* method introduced into SU^2
- Made use of Adjoint method for efficient and robust gradient evaluation
- Method seen to reduce objective function in both inviscid and viscous cases
The implementation presented here is to be extended to include parameters of a CAD model and hence form a CAD based optimisation problem.
ARE THERE ANY QUESTIONS?