Programme Specifications

Modules offered on Mathematics programmes in 2023-24

Semester 1	Semester 2		
Level 1			
MTH1011 Introduction to Algebra and Analysis (30 CATS) ^a			
MTH1021 Mathematica	al Methods 1 (30 CATS)		
MTH1015 Mathematical Reasoning (10 CATS)	MTH1025 Algorithmic Thinking (10 CATS)		
SOR1020 Introduction to Prob	ability and Statistics (30 CATS)		
	SOR1021 Introduction to SOR Methods (10CAT)		
Lev	el 2		
MTH2011 Linear Algebra	MTH2013 Metric Spaces		
MTH2012 Analysis	MTH2014 Group Theory		
MTH2031 Classical Mechanics	MTH2021 Mathematical Methods 2		
SOR2003 Methods of Operational Research	SOR2002 Statistical Inference		
Lev	el 3		
MTH3011 Measure and Integration	MTH3021 Dynamical Systems		
MTH3012 Rings and Modules	MTH3024 Modelling and Simulation		
MTH4322 Top. Data Analysis/Geom.of Optim.b	MTH3025 Financial Mathematics		
MTH3023 Numerical Analysis	MTH4311 Functional Analysis / FA & PDEsb		
MTH3031 Classical Fields	MTH4332 Statistical Mechanics/Quant. Fieldsb		
MTH3032 Quantum Theory	SOR3008 Stat. Data Mining & Machine Learn.		
SOR3004 Linear Models	AMA3011 Applied Mathematics Project		
SOR3012 Stochastic Processes and Risk	AMA3022 Team Project: Maths with Finance		
AMA3011 Applied Mathematics Project	PMA3013/AMA3020 (Mathem.) Investigations		
Lev	el 4		
MTH4011 Topology	MTH4021 Applied Algebra and Cryptography		
MTH4322 Top. Data Analysis/Geom.of Optim.b	MTH4311 Functional Analysis / FA & PDEsb		
MTH4024 Practical Methods for PDEs	MTH4022 Information Theory		
MTH4031 Advanced Quantum Theory	MTH4023 Mathematical Methods for QIP		
	MTH4332 Statistical Mechanics/Quant. Fieldsb		
SOR4007 Survival Analysis	SOR4008 Bayesian Statistics (from 2023-24)		
AMA4005 / PMA4001 / SOR4001 Project (40 CATS)			

^a All modules are 20 CATS unless indicated otherwise.
 ^b Modules taught in alternate years that can be taken at Level 3 or Level 4.

^c Level 2 Employability for Mathematics/Physics (0 CATS) must be taken to take a placement year.

Degree Programmes

- 1. BSc Mathematics
- 2. BSc Mathematics and Statistics and Operational Research
- 3. BSc (Applied) Mathematics and Physics
- 4. BSc Theoretical Physics
- 5. BSc Mathematics and Computer Science
- 6. BSc Mathematics with Finance
- 7. BSc Mathematics with French/Spanish
- 8. MMath/MSci Mathematics*
- 9. MMath/MSci Mathematics and Statistics and Operational Research
- 10. MSci Applied Mathematics and Physics
- 11. MPhys/MSci Theoretical Physics
- 12. MSci Mathematics and Computer Science
- * On the MMath/MSci Mathematics programme, students are expected to specialise in one of the four *streams*: Analysis/Differential Equations stream, Algebra stream, Quantum stream, Modelling stream. Each of these streams contains a number of compulsory modules, as well as some recommended (r) modules, *in addition to the modules that are compulsory for all MSci (MMath) students*, leading to a Level 4 project in the chosen area of specialisation.

0	Compulsory and recommended (r) modules				
Stream	Level 2	Level 3	Level 4		
Analysis/DEs		Dynamical Systems, Functional Analysis/Fourier Analysis & Application to PDEs	Topology, Functional Analysis/Fourier Analysis & Application to PDEs		
Algebra	Group Theory	Rings and Modules	Topology, Applied Algebra and Cryptography		
Quantum	Classical Mechanics	Quantum Theory, Functional Analysis/Fourier Analysis & Application to PDEs, Classical Fields (r), Quantum Fields / Statistical Mechanics (r), Numerical Analysis or Modelling & Simulation (r)	Advanced Quantum Theory, Functional Analysis/Fourier Analysis & Application to PDEs, Quantum Fields / Statistical Mechanics (r)		
Modelling	Classical Mechanics (r)	Numerical Analysis, Dynamical Systems, Modelling & Simulation (r)	Functional Analysis/Fourier Analysis & Application to PDEs (r), Practical Methods for PDEs		

BSc Mathematics

Core module	Recommend	ed module	Alternative core modules
Semester 1			Semester 2
	Lev	el 1	
Introduc	tion to Algebra	and Analysis	s (30 CATS)
Ma	athematical Met	thods 1 (30 C	CATS)
Mathematical Reasoning (1	0 CATS)	Algo	orithmic Thinking (10 CATS)
Introductio	on to Probability	y and Statisti	cs (30 CATS)
		Introduc	tion to SOR Methods (10 CATS)
	Lev	el 2	
Analysis			Metric Spaces
Linear Algebra			Group Theory
Classical Mechanic	S	I	Mathematical Methods 2
Methods of Operational R	esearch		Statistical Inference
	Level 3		
Measure and Integrat	ion		Dynamical Systems
Rings and Modules	6		
Top. Data Analysis / Geometry o	f Optimisation		Financial Mathematics
Classical Fields		Functional	Analysis / Fourier Analysis & PDEs
Quantum Theory		Statistic	cal Mechanics / Quantum Fields
Linear Models		Statistical	I Data Mining & Machine Learning
Stochastic Processes an	d Risk	М	athematical Investigations
Numerical Analysis	5	Ν	Modelling and Simulation
Applied Mathematics P	roject	Ар	plied Mathematics Project

At Stage 2, students should note the importance of taking Classical Mechanics or Group Theory, or Statistical Inference, as they are pre-requisites for a number of modules at Stage 3. At Stage 3, students must take Numerical Analysis or Modelling and Simulation, and take Applied Mathematics Project in semester 1 or semester 2, or Mathematical Investigations (but not both).

BSc Mathematics and Statistics and Operational Research

Core module	Recommende	ed module	Alternative core modules
Semester 1			Semester 2
	Lev	el 1	
Introduc	tion to Algebra	and Analysis	(30 CATS)
Ma	athematical Met	thods 1 (30 C	ATS)
Mathematical Reasoning (1	0 CATS)	Algo	prithmic Thinking (10 CATS)
Introductio	on to Probability	y and Statistic	cs (30 CATS)
		Introduc	tion to SOR Methods (10 CATS)
	Lev	el 2	
Analysis			Metric Spaces
Linear Algebra			Group Theory
Classical Mechanic	S	Ν	Aathematical Methods 2
Methods of Operational R	esearch		Statistical Inference
	Lev	el 3	
Measure and Integrat	ion		Dynamical Systems
Rings and Modules	;		
Top. Data Analysis / Geometry o	f Optimisation		Financial Mathematics
Classical Fields		Functional	Analysis / Fourier Analysis & PDEs
Quantum Theory		Statistic	al Mechanics / Quantum Fields
Linear Models		Statistical	Data Mining & Machine Learning
Stochastic Processes an	d Risk	Ma	athematical Investigations
Numerical Analysis	5	N	Iodelling and Simulation
Applied Mathematics P	roject	Ар	plied Mathematics Project

Students must take at least 80 CATS of SOR modules across Levels 2 and 3. At Stage 3, students must take Applied Mathematics Project in semester 1 or semester 2, or Mathematical Investigations (but not both).

BSc Applied Mathematics and Physics

Core module	Recommende	ed module	Core external module
Semester 1			Semester 2
	Leve	el 1	
Introduc	tion to Algebra	and Analysis	3 (30 CATS)
Ma	athematical Met	thods 1 (30 C	CATS)
PHY	1001 Foundation	n Physics (40	D CATS)
PH	IY1004 Scientifi	ic Skills (20 C	CATS)
	Leve	el 2	
Analysis			Metric Spaces
Linear Algebra			Group Theory
Classical Mechanic	s	I	Vathematical Methods 2
PHY2001 Quantum and Statis	tical Physics	PHY2004	Electricity, Magnetism and Optics
PHY2003 Astrophysic	cs I	PHY2	002 Physics of the Solid State
		PHY20	05 Atomic and Nuclear Physics
	Leve	el 3	
Measure and Integrat	ion		Dynamical Systems
Rings and Modules	3		Financial Mathematics
Top. Data Analysis / Geometry o	f Optimisation	Functional	Analysis / Fourier Analysis & PDEs
Classical Fields		Statistic	cal Mechanics / Quantum Fields
Quantum Theory/PHY3001 Quan	t. Mech. & Rel.	PHY300	2 Advanced Solid State Physics
PHY3004 Advanced Electromagn	etism & Optics		PHY3003 Astrophysics II
PHY3006 Physics in Me	dicine	PHY30	005 Nuclear & Particle Physics
Numerical Analysis / PHY3009	Comput. Proj.	Ν	Modelling and Simulation
Applied Maths Project / PHY3	007 Project	Applied I	Maths Project / PHY3007 Project

At Stage 3, students take either Applied Mathematics Project or PHY3007 Project, in addition to at least 2 taught modules from Mathematics and 2 taught modules from Physics, including Quantum Theory or PHY3001, and Numerical Analysis or Modelling & Simulation, or PHY3009.

BSc Theoretical Physics

Core module	Recommende	ed module	Core external module
Semester	1		Semester 2
	Lev	el 1	
Intro	oduction to Algebra	and Analysis (3	30 CATS)
	Mathematical Met	hods 1 (30 CA	TS)
I	PHY1001 Foundatio	n Physics (40 (CATS)
	PHY1004 Scientifi	c Skills (20 CA	TS)
	Level 2		
Linear Algeb	ora	PHY200	2 Physics of the Solid State
Classical Mech	anics	Mathematical Methods 2	
PHY2001 Quantum and S	tatistical Physics	PHY2004 EI	ectricity, Magnetism and Optics
	Lev	el 3	
Classical Fie	lds	Statistical	Mechanics / Quantum Fields
Quantum The	eory	Мс	delling and Simulation
Numerical Ana	llysis	F	inancial Mathematics
		PHY3002	Advanced Solid State Physics
		PHY300	5 Nuclear & Particle Physics
Applied Mathematic	cs Project	Appl	ied Mathematics Project

At Stage 3, students must take 3 compulsory taught modules and the Applied Mathematics Project (in semester 1 or 2), and two optional modules from Mathematics or Physics.

BSc Mathematics and Computer Science

Core module	Recommende	ed module	Core external module
Semester 1	Semester 1		Semester 2
	Leve	el 1	
Introduc	tion to Algebra	and Analysis	s (30 CATS)
Ма	athematical Met	hods 1 (30 C	CATS)
Mathematical Reasoning (1	0 CATS)	Alg	orithmic Thinking (10 CATS)
CSC1025 Procedural Prog	ramming	CSC102	9 Object Oriented Programming
	Leve	el 2	
Analysis			Metric Spaces
Linear Algebra			Group Theory
Classical Mechanic	S	I	Mathematical Methods 2
CSC2059 Data Structures and	Algorithms	CSC	2060 Theory of Computation
CSC2065 Professional and Trans	sferrable Skills	CSC2062 In	troduction to AI & Machine Learning
	Leve	el 3	
Measure and Integrat	ion		Dynamical Systems
Rings and Modules	3		
Top. Data Analysis / Geometry o	f Optimisation		Financial Mathematics
Classical Fields		Functional	Analysis / Fourier Analysis & PDEs
Quantum Theory		Statistic	cal Mechanics / Quantum Fields
Numerical Analysis	;	Ν	Nodelling and Simulation
CSC3021 Concurrent Prog	ramming	С	SC3001 Formal Methods
CSC3067 Video Analytics & Mac	hine Learning	(CSC3066 Deep Learning
		Μ	athematical Investigations
Applied Mathematics P	roject	Ap	plied Mathematics Project

At Stage 2, students take at least 40 CATS from Mathematics and 40 CATS from Computer Science. At Stage 3, the choice must include either Applied Mathematics Project or Mathematical Investigations, in addition to at least 40 CATS from Mathematics and 40 CATS from Computer Science.

BSc Mathematics with Finance

Core module	Recommende	ed module	Core external module	
Semeste	er 1		Semester 2	
	Lev	el 1		
Ir	troduction to Algebra	and Analysis	(30 CATS)	
	Mathematical Met	thods 1 (30 C	ATS)	
Intr	Introduction to Probability and Statistics (30 CATS)			
	Introduction to SOR Methods (10 CATS		tion to SOR Methods (10 CATS)	
	FIN1001 Financial Institutions and Market			
	Level 2			
Linear Alg	ebra	١	Mathematical Methods 2	
Methods of Operati	onal Research	Statistical Inference		
FIN2006 Financial D	ecision Making	FIN2	008 Financial Market Theory	
	Level 3			
Linear Mo	odels		Financial Mathematics	
Stochastic Proces	ses and Risk	Statistical	Data Mining & Machine Learning	
Numerical A	nalysis	Team Pro	oject: Mathematics with Finance	

BSc Mathematics with French/Spanish

Core module	Recommende	ed module	Core external module
Semester 1			Semester 2
	Leve	el 1	
Introduc	ction to Algebra a	and Analysis	s (30 CATS)
М	lathematical Metl	hods 1 (30 C	CATS)
Mathematical Reasoning (10 CATS)	Alg	orithmic Thinking (10 CATS)
FRH1101	French 1 / SPA1	101 Spanisł	h 1 (40 CATS)
	Leve	el 2	
Analysis			Metric Spaces
Linear Algebra			Group Theory
Classical Mechanic	cs	I	Mathematical Methods 2
FRH2101 French 2 / SPA2101 Spanish 2 (40 CATS)			
MTH3999	MTH3999 International Placement – Year Abroad		
	Leve	el 3	
Measure and Integra	tion		Dynamical Systems
Rings and Module	S		Financial Mathematics
Top. Data Analysis / Geometry of	of Optimisation	Functional	Analysis / Fourier Analysis & PDEs
Classical Fields		Statistic	cal Mechanics / Quantum Fields
Quantum Theory		М	athematical Investigations
Numerical Analysis	S	Γ	Modelling and Simulation
Applied Mathematics P	Project	Ap	oplied Mathematics Project
FRH3101 French 3 / SPA3101 Spanish 3 (40 CATS)			

At Stage 3, students must take Numerical Analysis or Modelling and Simulation, and take Applied Mathematics Project in semester 1 or semester 2, or Mathematical Investigations (but not both).

MMath/MSci Mathematics

Semester 1 Leve Introduction to Algebra Mathematical Met Mathematical Reasoning (10 CATS) Introduction to Probability Classical Rechanics Classical Mechanics Methods of Operational Research Leve Measure and Integration Rings and Modules	and Analysis (30 CATS) thods 1 (30 CATS) Algorithmic Thinking (10 CATS) and Statistics (30 CATS) Introduction to SOR Methods (10 CATS)
Introduction to Algebra Mathematical Met Mathematical Reasoning (10 CATS) Introduction to Probability Linear Algebra Classical Mechanics ^Q Methods of Operational Research Lev Measure and Integration	and Analysis (30 CATS) thods 1 (30 CATS) Algorithmic Thinking (10 CATS) / and Statistics (30 CATS) Introduction to SOR Methods (10 CATS) el 2
Mathematical Met Mathematical Reasoning (10 CATS) Introduction to Probability Linear Algebra Classical Mechanics ^Q Methods of Operational Research Lev Measure and Integration	thods 1 (30 CATS) Algorithmic Thinking (10 CATS) and Statistics (30 CATS) Introduction to SOR Methods (10 CATS) el 2
Mathematical Reasoning (10 CATS) Introduction to Probability Linear Algebra Classical Mechanics Methods of Operational Research Lev Measure and Integration	Algorithmic Thinking (10 CATS) and Statistics (30 CATS) Introduction to SOR Methods (10 CATS) el 2
Introduction to Probability Liver Analysis Linear Algebra Classical Mechanics Methods of Operational Research Leve Measure and Integration	and Statistics (30 CATS) Introduction to SOR Methods (10 CATS) el 2
Linear Algebra Classical Mechanics ^Q Methods of Operational Research Lev Measure and Integration	Introduction to SOR Methods (10 CATS) el 2
Analysis Linear Algebra Classical Mechanics ^Q Methods of Operational Research Lev Measure and Integration	el 2
Analysis Linear Algebra Classical Mechanics ^Q Methods of Operational Research Lev Measure and Integration	
Linear Algebra Classical Mechanics ^Q Methods of Operational Research Lev Measure and Integration	Metric Spaces
Classical Mechanics ^Q Methods of Operational Research Lev Measure and Integration	· · · · · · · · · · · · · · · · · · ·
Methods of Operational Research	Group Theory ^B
Lev Measure and Integration	Mathematical Methods 2
Measure and Integration	Statistical Inference
	el 3
Rings and Modules ^B	Dynamical Systems ^{A,M}
Rings and Modules ^B	
Top. Data Analysis / Geometry of Optimisation	Financial Mathematics
Classical Fields	Functional Analysis ^{A,Q} /Fourier Analysis & PDEs
Quantum Theory ^Q	Statistical Mechanics / Quantum Fields
Numerical Analysis ^M	Modelling and Simulation
Linear Models	Statistical Data Mining & Machine Learning
Stochastic Processes and Risk	Investigations ^{Q,M} /Mathematical Investigations ^{A,B}
Lev	el 4
Topology ^{A,B}	Applied Algebra and Cryptography ^B
Top. Data Analysis / Geometry of Optimisation	Functional Analysis ^A /Fourier Analysis & PDEs
Advanced Quantum Theory ^Q	Mathematical Methods for QIP
Practical Methods for PDEs ^M	Information Theory
	Statistical Mechanics / Quantum Fields
Survival Analysis	Devesien Otetistiss
AMA4005 Project ^{Q,M} / PM	Bayesian Statistics

^A Modules that must be taken by students on the Analysis stream

^B Modules that must be taken by students in the Algebra stream

^Q Modules that must be taken by students in the Quantum stream

^M Modules that must be taken by students in the Modelling stream

At Stage 2, students should note the importance of taking Classical Mechanics or Group Theory, or Statistical Inference, as they are pre-requisites for a number of modules at Stage 3.

MMath/MSci Mathematics and Statistics and Operational Research

Core module Re	commended module	Alternative core modules
Semester 1		Semester 2
	Level 1	
Introduction	to Algebra and Analysi	s (30 CATS)
Mather	natical Methods 1 (30	CATS)
Mathematical Reasoning (10 CA	ATS) Alg	porithmic Thinking (10 CATS)
Introduction to	Probability and Statist	tics (30 CATS)
	Introdu	ction to SOR Methods (10 CATS)
	Level 2	
Analysis		Metric Spaces
Linear Algebra		Group Theory
Classical Mechanics		Mathematical Methods 2
Methods of Operational Resea	rch	Statistical Inference
	Level 3	
Measure and Integration		Dynamical Systems
Rings and Modules		
Top. Data Analysis / Geometry of Opt	imisation	Financial Mathematics
Classical Fields	Functiona	I Analysis / Fourier Analysis & PDEs
Quantum Theory	Statisti	cal Mechanics / Quantum Fields
Numerical Analysis		Modelling and Simulation
Linear Models	Statistica	al Data Mining & Machine Learning
Stochastic Processes and Ris	sk Investiga	tions / Mathematical Investigations
	Level 4	
Topology	Appl	ied Algebra and Cryptography
Top. Data Analysis / Geometry of Opt	imisation Functiona	I Analysis / Fourier Analysis & PDEs
Advanced Quantum Theory	Ma	athematical Methods for QIP
Practical Methods for PDEs		Information Theory
	Statisti	cal Mechanics / Quantum Fields
Survival Analysis		Bayesian Statistics
SC	R4001 Project (40 CA	Т)

Students must take at least 80 CATS of SOR modules across Levels 2 and 3.

MSci Applied Mathematics and Physics

Core module	Recommende		Core external module	
Semester 1			Semester 2	
	Level 1			
Introdu	ction to Algebra	and Analysis	(30 CATS)	
N	lathematical Met	thods 1 (30 C	ATS)	
РНу	1001 Foundatio	n Physics (40	CATS)	
PI	HY1004 Scientif	ic Skills (20 C	ATS)	
	Lev	el 2		
Analysis			Metric Spaces	
Linear Algebra			Group Theory	
Classical Mechanic	cs	N	Nathematical Methods 2	
PHY2001 Quantum and Statis	stical Physics	PHY2004 E	Electricity, Magnetism and Optics	
PHY2003 Astrophysi	ics I	PHY20	02 Physics of the Solid State	
		PHY200	5 Atomic and Nuclear Physics	
	Lev	el 3		
Measure and Interga	Measure and Intergation		Dynamical Systems	
Rings and Module	S		Financial Mathematics	
Top. Data Analysis / Geometry of	of Optimisation	Functional A	Analysis / Fourier Analysis & PDEs	
Classical Fields		Statistical Mechanics / Quantum Fields		
Quantum Theory/PHY3001 Quar	nt. Mech. & Rel.	PHY3002	2 Advanced Solid State Physics	
PHY3004 Advanced Electromage	netism & Optics	Р	PHY3003 Astrophysics II	
PHY3006 Physics in Me	edicine	PHY30	05 Nuclear & Particle Physics	
Numerical Analysis / PHY3009	Comput. Proj.	Μ	Iodelling and Simulation	
PHY3008 Professional	Skills	Investigatio	ons / PHY3008 Professional Skills	
	Lev	el 4		
Topology		Applie	d Algebra and Cryptography	
Top. Data Analysis / Geometry of	of Optimisation	Functional A	Analysis / Fourier Analysis & PDEs	
Advanced Quantum T	heory	Matl	hematical Methods for QIP	
Practical Methods for	PDEs		Information Theory	
		Statistica	al Mechanics / Quantum Fields	
PHY4001 Physics Research Pro	oject (60 CATS)	Physics	modules (2×10 or 4×10 CATS)	
AMA4005 Project (40 CAT)				

At Stage 3, students take Investigations or PHY3008 and at least 2 taught modules from Mathematics and 2 from Physics, including, Quantum Theory or PHY3001, and NA or M&S, or PHY3009. At Stage 4, students take AMA4005 and 40 CATS from Physics, or PHY4001 and 40 CATS from Maths, with additional modules from Maths (1st case) or Physics (2nd case).

MPhys/MSci Theoretical Physics

Core module	Recommende	ed module	Core external module		
Semester 1		Semester 2			
Level 1					
Introduction to Algebra and Analysis (30 CATS)					
Mathematical Methods 1 (30 CATS)					
PHY1001 Foundation Physics (40 CATS)					
PHY1004 Scientific Skills (20 CATS)					
Level 2					
Linear Algebra		PHY2002 Physics of the Solid State			
Classical Mechanics		Mathematical Methods 2			
PHY2001 Quantum and Statist	ical Physics	PHY2004 Electricity, Magnetism and Optics			
Level 3					
Classical Fields		Statistical Mechanics / Quantum Fields			
Quantum Theory		Modelling and Simulation			
Numerical Analysis		Financial Mathematics			
		PHY3002 Advanced Solid State Physics			
		PHY3005 Nuclear & Particle Physics			
		Investigations			
Level 4					
Advanced Quantum Theory		Statistical Mechanics / Quantum Fields			
Practical Methods for PDEs		Information Theory			
		Mat	thematical Methods for QIP		
		Physics modules (2×10 CATS)			
AMA4005 Project (40 CAT)					

At Stage 4 students can take two appropriate 10 CATS Physics modules: PHY4003 Ionising Radiation in Medicine, PHY4004 Medical Radiation Simulation, PHY4007 Laser Physics, PHY4008 Plasma Physics, PHY4009 Physics of Materials Characterisation, PHY4010 Physics of Nanomaterials, PHY4016 Cosmology.

MSci Mathematics and Computer Science

Core module	Recommende	ed module	Core external module		
Semester 1			Semester 2		
Level 1					
Introduction to Algebra and Analysis (30 CATS)					
Mathematical Methods 1 (30 CATS)					
Mathematical Reasoning (10 CATS)		Algorithmic Thinking (10 CATS)			
CSC1025 Procedural Programming		CSC1029 Object Oriented Programming			
Level 2					
Analysis ^A		Metric Spaces ^A			
Linear Algebra		Group Theory ^B			
Classical Mechanics ^Q		Mathematical Methods 2 ^{Q,M}			
CSC2059 Data Structures and Algorithms		CSC2060 Theory of Computation			
CSC2065 Professional and Transferrable Skills		CSC2062 Introduction to AI & Machine Learning			
Level 3					
Measure and Integration ^A		Dynamical Systems			
Rings and Modules ^B		Financial Mathematics			
Top. Data Analysis / Geometry of Optimisation		Functional Analysis / Fourier Analysis & PDEs			
Classical Fields		Statistical Mechanics / Quantum Fields			
Quantum Theory ^Q		Ν	Iodelling and Simulation		
Numerical Analysis ^M					
CSC3021 Concurrent Programming		CSC3001 Formal Methods			
CSC3067 Video Analytics & Machine Learning		CSC3066 Deep Learning			
			Investigations ^{Q,M} /Mathematical Investigations ^{A,B}		
Level 4					
Topology ^{A,B}		Applied Algebra and Cryptography ^B			
Top. Data Analysis / Geometry of Optimisation		Functional Analysis / Fourier Analysis & PDEs			
Advanced Quantum Theory ^Q		Mathematical Methods for QIP			
Practical Methods for PDEs ^M		Information Theory			
		Statistic	al Mechanics / Quantum Fields		
CSC4008 Digital Transformation:		CSC4003 A	Igorithms: Analysis and Application		
AMA4005 Project ^{Q,M} / PMA4001 Project ^{A,B} (40 CAT)					

At Stages 2 and 3 students take at least 40 CATS from Mathematics and 40 CATS from Computer Science. Superscripts A, B, Q and M indicate modules recommended for students intending to pursue the Analysis, Algebra, Quantum or Modelling streams at Stages 2-4.