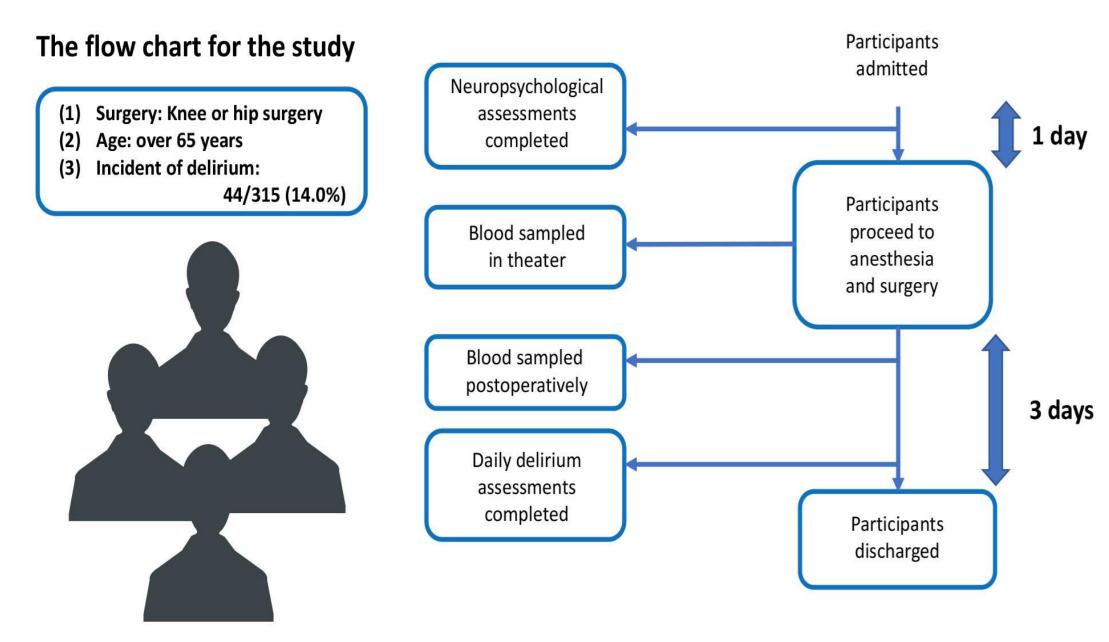


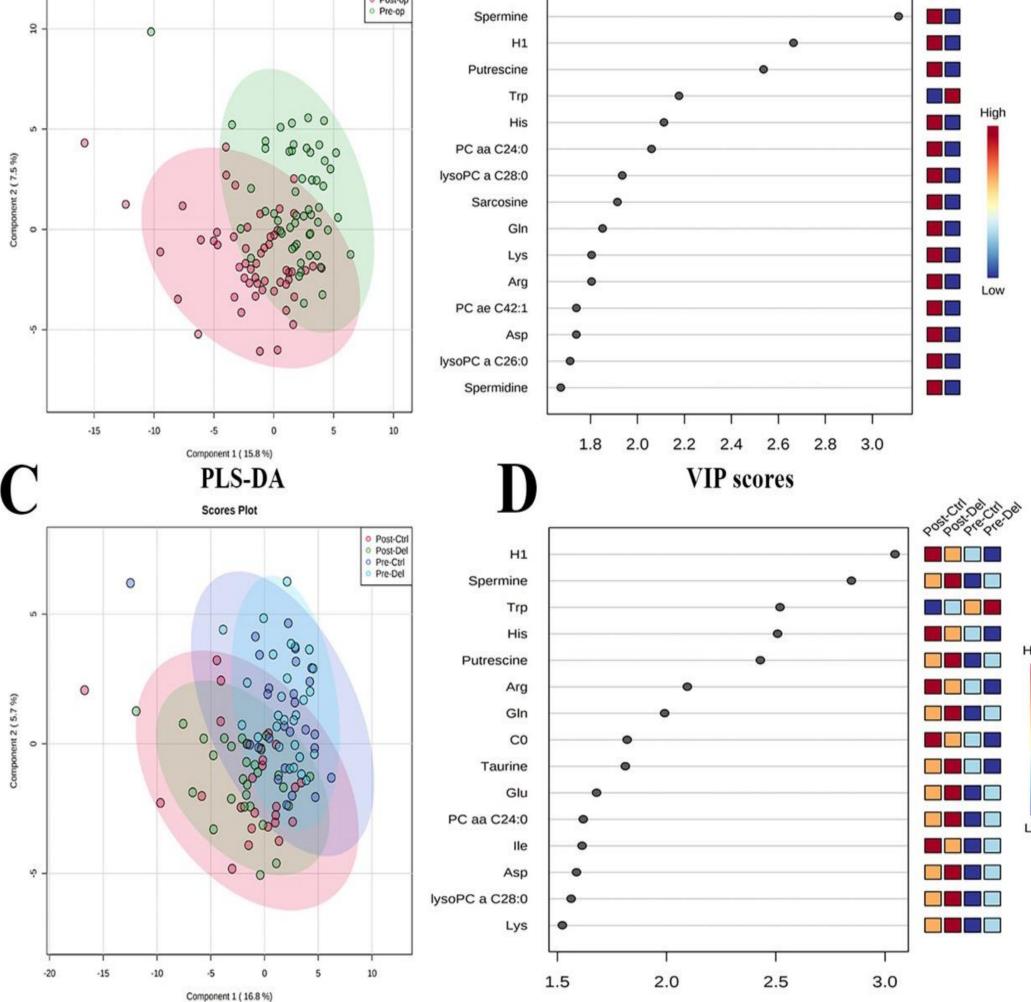
A nested case-control cohort of post-operative delirium finds levels of higher levels of ornithine pre-operatively, and higher levels of spermine post-operatively in plasma, indicating disturbed polyamine metabolism

Mijin Jung¹, Xiaobei Pan¹, Emma L. Cunningham², Anthony P. Passmore² Bernadette McGuinness², Daniel F. McAuley³, David Beverland⁴, Seamus O'Brien⁵, Tim Mawhinney⁵, Jonathan M. Schott⁶, Henrik Zetterberg⁶, Brian D. Green^{1*}

Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 8 Malone Road, Belfast, BT9 5BN, Northern Ireland, UK
Centre for Public Health, Queen's University Belfast, Block B, Institute of Clinical Sciences, Royal Victoria Hospital site, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland, UK
Centre for Experimental Medicine, Queen's University Belfast, Wellcome-Wolfson Institute for Experimental Medicine, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
Outcomes Assessment Unit, Musgrave Park Hospital, Belfast Trust, Stockman's Lane, Belfast, BT9 7JB, Northern Ireland, UK
Cardiac Surgical Intensive Care Unit, Belfast Trust, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland, UK

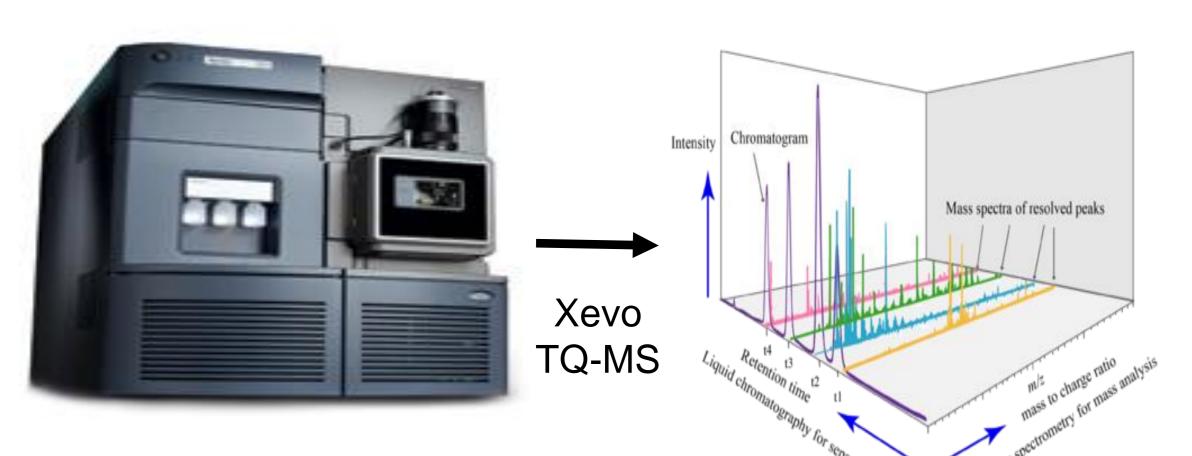

6. Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, UK, Box 16, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.

INTRODUCTION	RESULTS	<u>Multivariate modelling</u>				
		•	PLS-DA	D	VIP scores	
Delirium after surgery is common in older	Clinical characteristics	A	Scores Plot	D pst-op Spermine		Postoreop


Delirium after surgery is common in older people. The mechanisms underlying delirium development are unclear. We investigated the plasma metabolites significantly affected by orthopaedic surgery to better understand the causes of post-operative delirium.

MATERIALS & METHODS

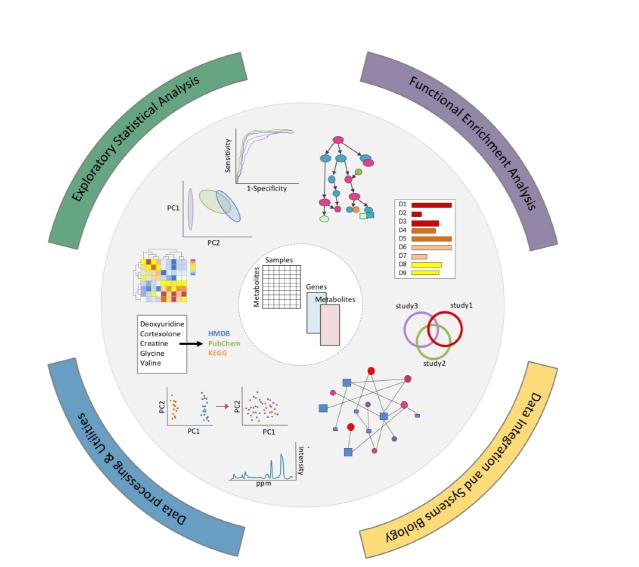
1. The chart of process of sample collection

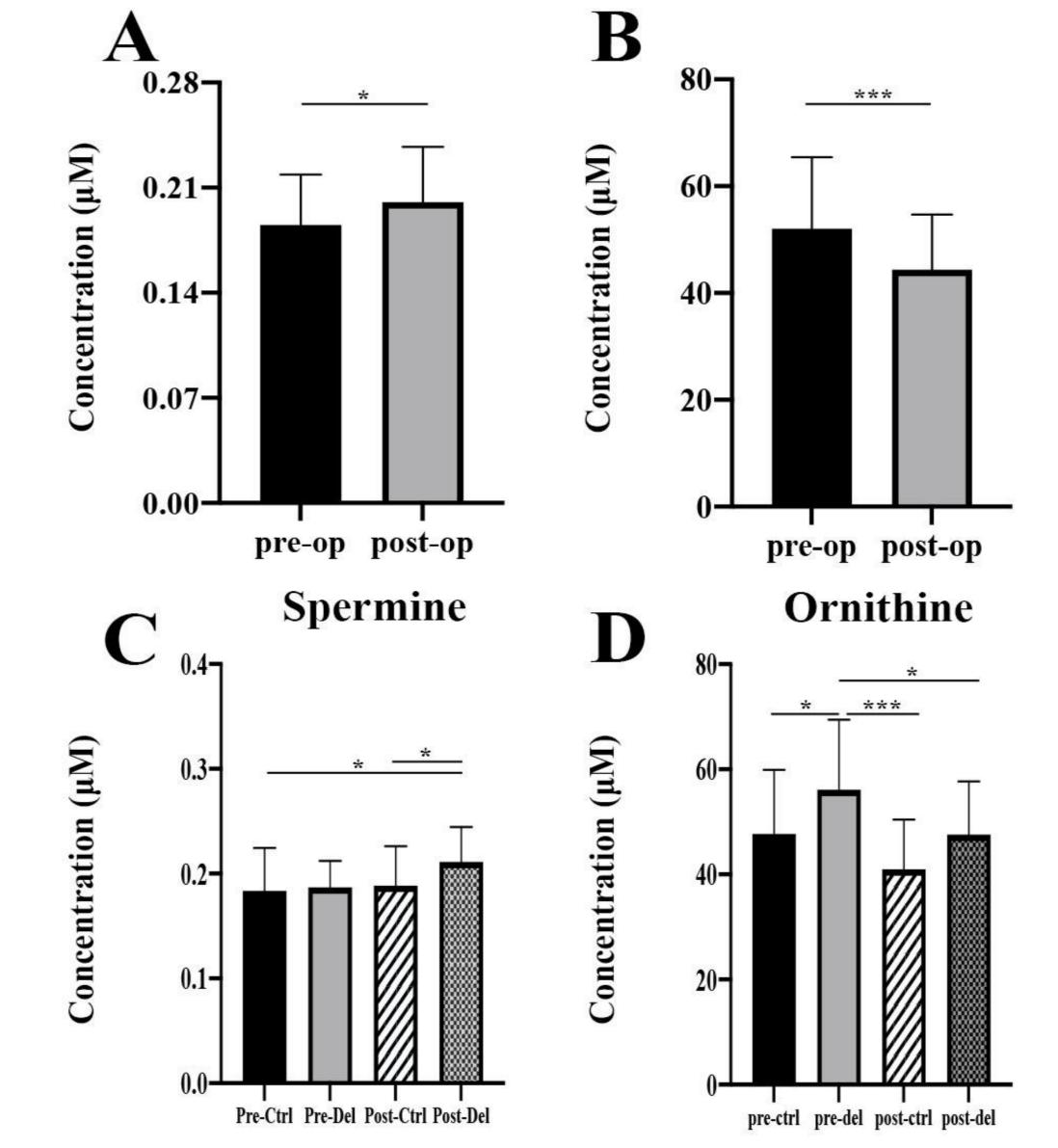


	Control (n=26)	Delirium (n=28)	Statistical test	P value	
Age, mean (SD)	75.8 (5.2)	76.2 (5.7)	T= -0.224	0.82	
Sex, female (%)	14/26	15/28	X2=0	1.00	
Type of surgery (hip vs knee), hip (%)	15 out of 26	9 out of 28	X2=2.604	0.11	
Years in Education, mean (SD)	11.4 (2.3)	11.3 (1.8)	MWU= 363	0.985	
BADL Score (Range:0-9), median (IQR)	3 (1-3)	3 (1-3)	MWU=356	0.884	
Vertical Visual Analogue Pain Scale pain at rest, mean (SD)	26.5 (22.7)	19.7 (24.9)	MWU=260.5	0.107	
Vertical Visual Analogue Pain Scale pain on movement, mean (SD)	75.7 (14.7)	65.0 (24.0)	T=1.969	0.055	
Estimated IQ, mean (SD)	111.7 (7.5)	106.8 (9.3)	T=2.093	0.041*	
CLOX 1 score, (Range:6-15), median (IQR)	13 (11-14)	12 (11-13)	MWU=303.5	0.286	
Letter fluency mean, mean (SD)	11.5 (3.9)	10.4 (4.2)	T=1.077	0.286	
Category fluency mean, mean (SD)	16.3 (3.8)	15.2 (3.7)	T=1.106	0.274	
Stroop colour-word score, mean (SD)	22.3 (6.1)	20.1 (6.8)	T=1.247	0.218	
Time taken to complete Colour Trails 2 (seconds), mean (SD)	146.4 (50.2)	205.2 (115.1)	MWU=235.5	0.041*	
New York university paragraph recall test (immediate recall score), (Range:1-9), median (IQR)	5.44 (3.83-6.89)	4.00 (3.00-5.27)	MWU=237.5	0.026*	
New York university paragraph recall test (delayed recall score), (Range:0-12), median (IQR),	5 (3-8)	4 (2-5.75)	MWU=251.5	0.050	
American Society Anesthesiologists (ASA) physical status (I/II/III)	0/22/3	1/21/6	MWU=328	0.564	
Charlson Comorbidity Index (CCI) 0/1/2/3	15/8/3/0	11/11/4/1	MWU=286.5	0.209	
Mini Mental State Examination Score (MMSE), mean (SD)	27.7 (1.9)	26.0 (2.8)	MWU= 203	0.012*	
AB42 in CSF, mean (SD)	613.88 (190.34)	453.01 (175.77)	T=3.198	0.002**	
T-tau in CSF, mean (SD)	291.32 (181.73)	401.01 (233.02)	MWU=204	0.009**	
p-tau in CSF, mean (SD)	51.55 (21.98)	63.88 (23.45)	MWU=201	0.008**	

Fig 2. Multivariate modelling of metabolite data. (A) Partial least squares discriminant analysis (PLS-DA) of pre-operative and post-operative samples and (B) the resulting variable importance in projection (VIP) plot showing the 15 most influential metabolites responsible. (C) PLS-DA of control and delirium cases pre-operatively and postoperatively and (D) resulting VIP showing the 15 most influential metabolites responsible.

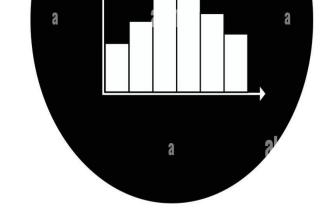
2. Targeted metabolomics


p-tau/AB42 in CSF, man (SD) 0.10 (0.08) 0.17 (0.09) MWU=122 4.60E-05**


Table 1. Groups were matched for age and sex. Cognitive scores and Alzheimer's disease biomarkers (AB42, T-tau, and p-tau) differed between the groups. Significant p-values are shown in bold. *p < 0.05, **p < 0.01, *** p < 0.001 control vs delirium.

Changes related to delirium and surgery

MetaboAnalyst software PLS-DA, VIP scores



Predictor variables for delirium

Variables	Unadjusted		Adjusted			
	Odds ratio	95% CI	<i>P</i> -value	Odds ratio	95% CI	<i>P</i> -value
Spermine (% change)	1.019	0.995 - 1.043	.126	1.036	0.997 – 1.076	.071
Ornithine (% change)	1.023	0.983 - 1.064	.263	1.037	0.964 - 1.116	.327
Age	1.012	0.916 - 1.118	.820	0.969	0.842 - 1.114	.658
Sex (F/M)	1.000	0.336 - 2.976	1.000	0.709	0.132 - 3.815	.689
Surgery Type (hip vs knee)	2.879	0.948 - 8.744	.062	1.741	0.295 - 10.281	.540
CCI	1.618	0.776 - 3.372	.199	1.431	0.425 - 4.816	.563
Estimated IQ	0.934	0.872 – 0.999	.047*	0.946	0.852 - 1.051	.302
MMSE	0.711	0.528 - 0.958	.025*	0.871	0.578 - 1.311	.507
Αβ42	0.995	0.992 - 0.999	.005**	0.994	0.989 - 0.999	.027*

Table2.Perioperativechangesinmetabolitesdid not independently predictprostoperativedelirium.Significant p-valuesareshown in bold. *p < .05, **p < .01 variables vs delirium.</td>

CONCLUSION

Statistics

Paired Student's t-test the Wilcoxon Mann-Whitney test False discovery rates (FDR, q-value) Binary logistic regression

Participants (n = 54) matched for age and gender were sampled from an observational cohort study investigating post-operative delirium. Participants were ≥ 65 years without a diagnosis of dementia presenting for primary elective hip or knee arthroplasty. Plasma samples collected pre- and post-operatively were grouped as either control (n = 26, aged: 75.8 ± 5.2) or delirium (n = 28, aged: 76.2 ± 5.7). Metabolite profiling of plasma was undertaken using a triple-quadrupole mass spectrometer.

Fig 1. Perioperative changes in spermine and ornithine differed significantly between delirium and no delirium groups. Spermine (A) and ornithine (B) concentrations (μ M) in pre- and post-op samples. Spermine (C) and ornithine (D) concentrations (μ M) in pre- and post-op samples with control and delirium. *p < 0.05, **p < 0.01, and ***p < 0.01 for both pre- and post-op and pre- and post-op with control and delirium for each group. Pre- and post-operative changes in plasma ornithine and spermine, respectively, are associated with postoperative delirium. These findings support the hypothesis that disturbed polyamine metabolism is an underlying factor in delirium which must be further investigated.

REFERENCES

- I. Inouye SK, Westendorp RGJ, Saczynski JS. Delirium in elderly people. Lancet (London, England). 2014; 383(9920):911-922.
- Cunningham EL, McGuinness B, McAuley DF, Toombs J, Mawhinney T, O'Brien S, et al. CSF Beta-amyloid 1-42 Concentration Predicts Delirium Following Elective Arthroplasty Surgery in an Observational Cohort Study. Ann. Surg. 2019;269(6):1200-1205.
- Pan X, Cunningham EL, Passmore AP, McGuinness B, McAuley DF, Beverland D, et al. Cerebrospinal Fluid Spermidine, Glutamine and Putrescine Predict Postoperative Delirium Following Elective Orthopaedic Surgery. Sci. Rep. 2019; 9(1): 4191.

Acknowledgments: This work was funded by Alzheimer's Research UK (Metabolomic Analyses funded by Network Centre Pump Priming Grant)