

Two Stage Feature Engineering to Predict Air pollutants in Urban Areas: A Belfast City Case Study

FAREENA NAZ^{1*}, MUHAMMAD FAHIM¹, ADNAN AHMAD CHEEMA², NGUYEN TRUNG VIET³, TUAN-VU CAO⁴, RUTH HUNTER⁵, AND TRUNG Q. DUONG^{1,6}

¹Centre School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, NI, UK; ²SenComm Research Lab, School of Engineering, Ulster University, Belfast, UK; ³ Thuyloi University, Hanoi, Vietnam; ⁴ Norwegian Institute for Air Research, Oslo, Norway; ⁵ 5Centre for Public Health. School of Medicine. Dentistry and Biomedical Sciences. Queen's University Belfast. UK: ^{1,6} Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Canada

*Contact information: fnaz01@qub.ac.uk

BACKGROUND

- □ Air pollution is the global environmental health challenge.
- **99%** of global population breath air that contains high level of pollutants and is estimated to cause 6.7 million premature deaths worldwide each year, with low- and middle-income nations accounting for 95% of these deaths.
- UK govt. has set a goal to curtail **35% of air pollution by 2040**.
- □ Identification of pollutants, their sources of emission, and accurate prediction of their concentration is vital and facilitates the authorities and governing bodies in making evidence-based decisions.
- □ AIM: To build **features** based **simplified** Machine Leaning prediction. Model.

MACHINE LEARNING MODEL

U We proposed two stage feature selection method which is based on correlation and selection of an optimum number of intrinsic mode functions (IMFs) to achieve optimum performance using a simplified LSTM model.

Figure 1. Workflow of model training and testing with two stage feature engineering and selection approach

METHODOLOGY AND RESULTS

- □ In this study, we explored the strength of features and proposed a two-stage feature engineering approach, which fuses the advantage of influential factors along with the decomposition approach and generates an optimum feature combination for five major pollutants including NO₂, O₃, SO₂, PM2.5 and PM10. Table 1. Summary of Stage-1 combinations and IMFs to produce optimum combinations with respective Gains
- □ In stage-1, using the dataset we created new features to capture their dependency on the target pollutant and generated correlation-inspired best feature combinations to improve forecasting model performance.
- □ This is further enhanced in stage-2 by an optimum feature combination which is an integration of stage-1 and Variational Mode Decomposition (VMD) based features.
- U We employed a simplified Long Short-Term Memory (LSTM) neural network and proposed a single-step forecasting model to predict multivariate time series data.

Pollutants Stage-1 Combination Staae-1 Ontimum

			Gain	Gain
NO2	Lag + Meteorological + Temporal	3	5	11
0 ₃	Lag	4	-	3
SO ₂	Lag + Meteorological + Statistical + Air Pollutant	4	2	13
PM2.5	Lag + Temporal	4	1	6
PM10	Lag + Air Pollutant	3	1	8

Figure 3. Proposed approach and evaluation based on R²

qub.ac.uk/sites/space/ @spacequb

This work was supported by UK Research and Innovation [ES/V016075/1]

Healthy Ageing Challenge Social. Behavioural and Design Research

CONCLUSIONS

- Our findings through results demonstrated that with the optimum selection of features, a simplified forecasting model is sufficient and has shown significant improvement in terms of RMSE, MAE, and R² scores.
- □ It is observed that such an optimum combination can bring an overall performance improvement up to 13%.

