Top
Skip to Content
LOGO(small) - Queen's University Belfast
  • Our facebook
  • Our x-twitter
LOGO(large) - Queen's University Belfast

School of

Chemistry and Chemical Engineering

  • Home
  • Study
    • Undergraduate
    • Postgraduate Taught
    • Postgraduate Research
  • Research
    • Research Environment
    • Research Centres
    • Research Impact
    • Spin-Out Companies
    • Researcher Spotlight
    • Postgraduate Research
    • Research Seminars and Events
  • Our School
    • Discover
    • Facilities
    • Staff
    • Athena SWAN
    • Key contacts
  • Work Experience
  • CCE Reunion 2025
  • Home
  • Study
    • Undergraduate
    • Postgraduate Taught
    • Postgraduate Research
  • Research
    • Research Environment
    • Research Centres
    • Research Impact
    • Spin-Out Companies
    • Researcher Spotlight
    • Postgraduate Research
    • Research Seminars and Events
  • Our School
    • Discover
    • Facilities
    • Staff
    • Athena SWAN
    • Key contacts
  • Work Experience
  • CCE Reunion 2025
  • Our facebook
  • Our x-twitter
In This Section
  • CCE Reunion 2025

  • Home
  • School of Chemistry and Chemical Engineering
  • Events
  • Past Events

Past Events

School Research Seminar - Dr Susannah Coote - Lancaster University

Back to events

"Making Difficult-to-Make Molecules: Photochemistry as an Enabling Tool"

Dr Susannah Coote
Date(s)
January 20, 2021
Location
School of Chemistry and Chemical Engineering - ONLINE seminar
Time
14:00 - 15:00

Converting simple starting materials into complex products using only a light source (synthetic photochemistry) is especially attractive to organic chemists, particularly from the point of view of green chemistry: waste is minimized, and light is readily available. In addition, photochemical routes often allow efficient access to complex frameworks (particularly to strained molecules and intermediates) that cannot be generated using ground-state chemistry.

In this seminar, Dr Coote's recent work on the synthesis and applications of bicyclic 1,2-diazetidines2 will be presented. Bicycles2 can be obtained in high yields from 1,2-dihydropyridazines1 simply upon irradiation at 350 nm, and are versatile synthetic intermediates that can be converted into a variety of different derivatives, including substituted 1,2-diazetidines, cyclobutanes, cyclobutenes and dienes (Figure 1).1,2,3 In addition, related work on similar systems will be discussed, including ongoing unpublished work.

A chemical reaction mechanism

Figure 1.

 

References

1. Britten, T. K.; Kemmitt, P. D.; Halcovitch, N. R.; Coote, S. C. Org. Lett. 2019, 22, 9232

2. Britten, T. K.; Akien, G. R.; Kemmitt, P. D.; Halcovitch, N. R.; Coote, S. C. Tetrahedron Lett. 2019, 60, 1497

3. Britten, T. K.; Kemmitt, P. D.; Halcovitch, N. R.; Coote, S. C. Synlett 2020, 31, 459

 

Event type
Workshop / Seminar / Course
Department
Audience
Academics / Researchers
Add to calendar
Share
  • Facebook
  • Twitter
  • LinkedIn
  • Weibo
  • Email
Dr Susannah Coote
Events
  • Events
  • CCE Reunion 2025
QUB Logo
Contact Us

School of Chemistry and Chemical Engineering

David Keir Building
Stranmillis Road
Belfast
Northern Ireland
BT9 5AG

GET DIRECTIONS

Tel:+44 (0)28 9097 5418
Fax: +44 (0)28 9097 6524
E-mail: candce@qub.ac.uk

Quick Links

  • Home
  • Study
  • Careers
  • Research

 

© Queen's University Belfast 2024
  • Privacy and cookies
  • Website accessibility
  • Freedom of information
  • Modern slavery statement
  • Equality, Diversity and Inclusion
  • University Policies and Procedures
Information
  • Privacy and cookies
  • Website accessibility
  • Freedom of information
  • Modern slavery statement
  • Equality, Diversity and Inclusion
  • University Policies and Procedures

© Queen's University Belfast 2024

Manage cookies