Skip to Content

detail

BSc Mathematics

Academic Year 2018/19

A programme specification is required for any programme on which a student may be registered. All programmes of the University are subject to the University's Quality Assurance processes. All degrees are awarded by Queen's University Belfast.

Programme Title

BSc Mathematics

Final Award
(exit route if applicable for Postgraduate Taught Programmes)

Bachelor of Science

Programme Code

MTH-BSC-S

UCAS Code

G100

HECoS Code

100403

ATAS Clearance Required

No

Mode of Study

Full Time

Type of Programme

Single Honours

Length of Programme

3 Academic Year(s)

Total Credits for Programme

360

Exit Awards available

INSTITUTE INFORMATION

Teaching Institution

Queen's University Belfast

School/Department

Mathematics & Physics

Framework for Higher Education Qualification Level 
www.qaa.ac.uk

Level 6

QAA Benchmark Group
www.qaa.ac.uk/quality-code/subject-benchmark-statements

Mathematics, Statistics and Operational Research (2015)

Accreditations (PSRB)

Institute of Mathematics and its Applications

Date of most recent Accreditation Visit 04-06-13

REGULATION INFORMATION

Does the Programme have any approved exemptions from the University General Regulations
(Please see General Regulations)

No

Programme Specific Regulations

Students will not be permitted to register for Stage 2 unless they have passed all their core Level 1 modules.

Transfers to Other Pathways
Up to the start of Stage 3, Students may transfer to other Pathways (BSc, or if they have achieved a weighted average of at least 55%, before rounding MSci), provided they have passed all the compulsory modules on the Pathway to which they are transferring up to that time of transfer.

Students with protected characteristics

N/A

Are students subject to Fitness to Practise Regulations

(Please see General Regulations)

No

EDUCATIONAL AIMS OF PROGRAMME

- Demonstrate appropriate understanding of the basic body of knowledge of mathematics, and appropriate skill in manipulation of this knowledge, including in its application to problem solving

- Apply core mathematics concepts in well-defined contexts, through the judicious use of analytical and computational methods, tools and techniques and the judicious use of logical arguments

- Analyse problems through their formulation in terms of mathematics

- Communicate mathematical arguments to a range of audiences in both written and oral form

LEARNING OUTCOMES

Learning Outcomes: Cognitive Skills

On the completion of this course successful students will be able to:

Apply mathematical knowledge logically and accurately in the solution of examples and small-scale problems.

Teaching/Learning Methods and Strategies

By its nature, mathematics has to be presented logically. The lectures and model examples to problems provide exemplars of this logical structure. They also identify the tools needed to address certain problems. Tutorial problems and assignments offer the students opportunities to develop their logical reasoning skills, to develop skills in organising their reasoning and application of mathematics, and to develop skills in the selection of techniques.

Methods of Assessment

The assessment of these skills is implicit in most methods of assessment, including exams, coursework, practical and project work. The overall degree of success in any assessment depends to a large extent on students’ mastery of logical and accurate methods of solution, well-organised structure of answers, and the identification of the appropriate solution method.

Conduct a small-scale mathematical investigation under supervision.

Teaching/Learning Methods and Strategies

The project modules will offer the students the opportunity to identify what it takes to carry out a longer mathematics investigation. These skills are also developed through extended assignments in a wide range of modules across the entire spectrum.

Methods of Assessment

These skills are assessed mainly through project reports and oral presentations on project work of increasing complexity, culminating in the final project

Analyse small-scale problems and situations in mathematical terms, and identify the appropriate mathematical tools and techniques for their solution.

Teaching/Learning Methods and Strategies

By its nature, mathematics has to be presented logically. The lectures and model examples to problems provide exemplars of this logical structure. They also identify the tools needed to address certain problems. Tutorial problems and assignments offer the students opportunities to develop their logical reasoning skills, to develop skills in organising their reasoning and application of mathematics, and to develop skills in the selection of techniques.

Methods of Assessment

The assessment of these skills is implicit in most methods of assessment, including exams, coursework, practical and project work. The overall degree of success in any assessment depends to a large extent on students’ mastery of logical and accurate methods of solution, well-organised structure of answers, and the identification of the appropriate solution method.

Organise their work in a structured manner

Teaching/Learning Methods and Strategies

By its nature, mathematics has to be presented logically. The lectures and model examples to problems provide exemplars of this logical structure. They also identify the tools needed to address certain problems. Tutorial problems and assignments offer the students opportunities to develop their logical reasoning skills, to develop skills in organising their reasoning and application of mathematics, and to develop skills in the selection of techniques.

Methods of Assessment

The assessment of these skills is implicit in most methods of assessment, including exams, coursework, practical and project work. The overall degree of success in any assessment depends to a large extent on students’ mastery of logical and accurate methods of solution, well-organised structure of answers, and the identification of the appropriate solution method.

Learning Outcomes: Knowledge & Understanding

On the completion of this course successful students will be able to:

Demonstrate some understanding of the connection between different areas of mathematics and/or between mathematics and other sciences and application areas

Teaching/Learning Methods and Strategies

Lectures provide the core method for the presentation of the knowledge required for students to be successful. Each lecture-based module has associated tutorials, and, where appropriate, practical classes to assist the student with the development of understanding of the core contents, including its application. Assignments are provided to assist further development of understanding. These assignments are marked and returned to students typically within one week with individual feedback. Model solutions to these assignments are made available to students for additional self-study.

Methods of Assessment

This is tested in particular in the project modules, as this is where outside applications may primarily appear. Modules in applied mathematics and statistics may demonstrate application in physics, medicine, business and finance.
The hierarchical nature of mathematics means that all mathematical modules are based on previous mathematical knowledge, and so this understanding is implicitly assessed in any examination.

Demonstrate understanding, and application of this understanding, within a range of more specialist optional topics

Teaching/Learning Methods and Strategies

Lectures provide the core method for the presentation of the knowledge required for students to be successful. Each lecture-based module has associated tutorials, and, where appropriate, practical classes to assist the student with the development of understanding of the core contents, including its application. Assignments are provided to assist further development of understanding. These assignments are marked and returned to students typically within one week with individual feedback. Model solutions to these assignments are made available to students for additional self-study.

Methods of Assessment

Formal exams, class tests, small reports, presentations

Understand and appreciate the importance of mathematical logic

Teaching/Learning Methods and Strategies

Lectures provide the core method for the presentation of the knowledge required for students to be successful. Each lecture-based module has associated tutorials, and, where appropriate, practical classes to assist the student with the development of understanding of the core contents, including its application. Assignments are provided to assist further development of understanding. These assignments are marked and returned to students typically within one week with individual feedback. Model solutions to these assignments are made available to students for additional self-study.

Methods of Assessment

Formal exams, class tests, small reports, presentations
This appreciation is of particular importance to the project modules, as mathematical logic is critical to arrive at appropriate mathematical conclusions

Use these fundamental concepts and techniques in a range of application areas, including, for example, partial differential equations, mechanics, numerical analysis, statistics and operational research

Teaching/Learning Methods and Strategies

Lectures provide the core method for the presentation of the knowledge required for students to be successful. Each lecture-based module has associated tutorials, and, where appropriate, practical classes to assist the student with the development of understanding of the core contents, including its application. Assignments are provided to assist further development of understanding. These assignments are marked and returned to students typically within one week with individual feedback. Model solutions to these assignments are made available to students for additional self-study.

Methods of Assessment

Formal exams, class tests, small reports, presentations

Application of the fundamental concepts is also of importance to any of the project modules, as deeper understanding will result in higher marks

Demonstrate understanding of the fundamental concepts and techniques of calculus, analysis, algebra, linear algebra and numerical methods

Teaching/Learning Methods and Strategies

Lectures provide the core method for the presentation of the knowledge required for students to be successful. Each lecture-based module has associated tutorials, and, where appropriate, practical classes to assist the student with the development of understanding of the core contents, including its application. Assignments are provided to assist further development of understanding. These assignments are marked and returned to students typically within one week with individual feedback. Model solutions to these assignments are made available to students for additional self-study.

Methods of Assessment

Formal exams, class tests, small reports, presentations

Learning Outcomes: Subject Specific

On the completion of this course successful students will be able to:

Demonstrate understanding of logical mathematical arguments, including mathematical proofs and their construction, and apply these arguments appropriately.

Teaching/Learning Methods and Strategies

Each lecture-based module has associated tutorials, and, where appropriate, practical classes to assist the student with the development of understanding and application of logical mathematical arguments and/or analytic/numerical mathematical techniques. Assignments also assist the development of understanding in these areas.

The project modules allow students to spend time on a more extended problem, which will enable a more in-depth development of mathematical arguments and application mathematical techniques

Methods of Assessment

Assessment is mainly through formal examination and class tests for lecture-based modules. This assessment is supplemented through written reports and oral presentations. For project modules, the latter is the main method of assessment.

Apply a wide range of analytic and/or numerical mathematical techniques within well-defined contexts, and to formulate and solve problems in more loosely defined contexts.

Teaching/Learning Methods and Strategies

Each lecture-based module has associated tutorials, and, where appropriate, practical classes to assist the student with the development of understanding and application of logical mathematical arguments and/or analytic/numerical mathematical techniques. Assignments also assist the development of understanding in these areas.

The project modules allow students to spend time on a more extended problem, which will enable a more in-depth development of mathematical arguments and application mathematical techniques

Methods of Assessment

Assessment is mainly through formal examination and class tests for lecture-based modules. This assessment is supplemented through written reports and oral presentations. For project modules, the latter is the main method of assessment.

Use a range of mathematical software for the solution of mathematical problems.

Teaching/Learning Methods and Strategies

Basic skills are developed through the mathematical modelling module and the computer algebra module. Numerical analysis and statistics oriented modules have associated computer practicals, using appropriate specialist software.

In the project modules, further opportunities to use mathematical software may be available.

Methods of Assessment

These skills are primarily assessed through reports and presentations associated with work carried out using mathematical software.

Present mathematical findings through oral and written means to a range of audiences.

Teaching/Learning Methods and Strategies

Communication through reports and/or oral presentations forms a compulsory part of many modules across the entire range of modules offered.

Methods of Assessment

These skills are primarily assessed through compulsory reports and presentations within many modules.

Learning Outcomes: Transferable Skills

On the completion of this course successful students will be able to:

Adopt an analytic approach to problem solving.

Teaching/Learning Methods and Strategies

Analytic thinking is part of any module in mathematics, and is therefore cultivated through the tutorials, practicals and assignments associated with each lecture-based module, including all the project components.

It is also a critical skill developed during the project modules.

Methods of Assessment

Analytic thinking is embedded implicitly in every assessment within mathematics.

Problem solving skills will be assessed through an extended range of project work, culminating in the final-year project modules.

Use computer technology efficiently for a variety of purposes.

Teaching/Learning Methods and Strategies

Basic computer modelling skills are developed through the mathematical modelling module and the computer algebra module. Numerical analysis and statistics oriented modules have associated computer –oriented tasks, where students can develop skills in the use of appropriate specialist software.
In the project modules, further opportunities to use mathematical software may be available.
Written reports develop skills in the use of word-processing software, while the presentations can develop skills in the use of presentation software.

Methods of Assessment

Computer modelling skills are primarily assessed through reports and presentations associated with work carried out using mathematical software.
The main test in Computer Algebra takes place through a direct assessment of their use of appropriate software.
Computer skills in word-processing and presentation development are assessed implicitly in the project and presentation assessment.

Use computer technology efficiently for a variety of purposes.

Teaching/Learning Methods and Strategies

Any assignment or coursework or project work involves the communication of mathematical ideas, and these skills are thus embedded indirectly in any module.
Any report or presentation will provide an explicit learning opportunity, where the increase in mathematical difficulty at higher levels will provide a means for communication skill development.

Methods of Assessment

The assessment of communication skills takes place through the reports and presentations, where higher skill levels will result in higher overall marks.

Manage their time.

Teaching/Learning Methods and Strategies

Project work associated with modules at each Level are the prime method for development. The increase in level of complexity of such projects throughout the programme, in line with student’s overall development, will implicitly develop the students’ skills in project management.

Methods of Assessment

These skills are assessed implicitly as part of any project component to a module. A higher level of skill in time management will provide student with greater opportunity to present a well thought-through report, which allows the students to better highlight their achievements.

Oversee small-scale projects.

Teaching/Learning Methods and Strategies

Project work associated with modules at each Level are the prime method for development. The increase in level of complexity of such projects throughout the programme, in line with student’s overall development, will implicitly develop the students’ skills in project management.

Methods of Assessment

These skills are assessed implicitly as part of any project component to a module. A higher level of skill in time management will provide student with greater opportunity to present a well thought-through report, which allows the students to better highlight their achievements.

Present findings through oral communication.

Teaching/Learning Methods and Strategies

Any assignment or coursework or project work involves the communication of mathematical ideas, and these skills are thus embedded indirectly in any module.
Any report or presentation will provide an explicit learning opportunity, where the increase in mathematical difficulty at higher levels will provide a means for communication skill development.

Methods of Assessment

The assessment of communication skills takes place through the reports and presentations, where higher skill levels will result in higher overall marks.

Present findings through written reports.

Teaching/Learning Methods and Strategies

Any assignment or coursework or project work involves the communication of mathematical ideas, and these skills are thus embedded indirectly in any module.
Any report or presentation will provide an explicit learning opportunity, where the increase in mathematical difficulty at higher levels will provide a means for communication skill development.

Methods of Assessment

The assessment of communication skills takes place through the reports and presentations, where higher skill levels will result in higher overall marks.

MODULE INFORMATION

Stages and Modules

Module Title

Module Code

Level/ stage

Credits

Availability

Duration

Pre-requisite

Assessment
S1 S2 Core Option Coursework % Practical % Examination %
Analysis and Calculus AMA1020 1 30 YES YES 24 weeks N YES 0% 10% 90%
Numbers, Vectors and Matrices PMA1020 1 30 YES YES 24 weeks N YES 0% 10% 90%
Mathematical Reasoning PMA1021 1 10 YES 12 weeks N YES 60% 40% 0%
Introduction to Probability & Statistics SOR1020 1 30 YES YES 24 weeks N YES 0% 10% 90%
Mathematical Modelling AMA1021 1 10 YES 12 weeks N YES 80% 20% 0%
Introduction to Statistical and Operational Research Methods SOR1021 1 10 YES YES 24 weeks N YES 100% 0% 0%
Fluid Mechanics AMA2005 2 20 YES 12 weeks Y YES 20% 0% 80%
Analysis PMA2002 2 20 YES 12 weeks Y YES 25% 0% 75%
Methods of Operational Research SOR2003 2 20 YES 12 weeks Y YES 20% 10% 70%
Numerical Analysis AMA2004 2 20 YES 12 weeks Y YES 40% 10% 50%
Classical Mechanics AMA2001 2 20 YES 12 weeks Y YES 20% 0% 80%
Group Theory PMA2008 2 20 YES 12 weeks Y YES 20% 0% 80%
Statistical Inference SOR2002 2 20 YES 12 weeks Y YES 20% 10% 70%
Linear Models SOR2004 2 20 YES 12 weeks Y YES 20% 10% 70%
Introduction to Partial Differential Equations AMA2008 2 10 YES 6 weeks Y YES 60% 0% 40%
Linear Algebra & Complex Variables PMA2020 2 30 YES YES 18 weeks Y YES 10% 0% 90%
Quantum Theory AMA3002 3 20 YES 12 weeks N YES 30% 0% 70%
Linear & Dynamic Programming SOR3001 3 20 YES 12 weeks N YES 20% 10% 70%
Tensor Field Theory AMA3003 3 20 YES 12 weeks N YES 20% 0% 80%
Partial Differential Equations AMA3006 3 20 YES 12 weeks N YES 20% 0% 80%
Computer Algebra PMA3008 3 20 YES YES 12 weeks N YES 0% 100% 0%
Ring Theory PMA3012 3 20 YES 12 weeks N YES 20% 0% 80%
Set Theory PMA3014 3 20 YES 12 weeks N YES 30% 0% 70%
Financial Mathematics AMA3007 3 20 YES 12 weeks N YES 20% 10% 70%
Mathematical Investigations PMA3013 3 20 YES 12 weeks N YES 90% 10% 0%
Stochastic Processes and Risk SOR3012 3 20 YES 12 weeks N YES 55% 0% 45%
Statistical Data Mining SOR3008 3 20 YES 12 weeks N YES 0% 40% 60%
Calculus of Variations & Hamiltonian Mechanics AMA3013 3 20 YES 12 weeks N YES 30% 0% 70%
Mathematical Modelling in Biology and Medicine AMA3014 3 20 YES 12 weeks N YES 50% 0% 50%
Metric and Normed Spaces PMA3017 3 20 YES 12 weeks N YES 20% 0% 80%
Algebraic Equations PMA3018 3 20 YES 12 weeks N YES 10% 10% 80%
Applied Mathematics Project AMA3011 3 20 YES YES 12 weeks N YES 80% 20% 0%

Notes

At Stage 1 Students are required to take AMA1020, AMA1021, PMA1020 and PMA1021 and two other modules, which may be chosen, from any of those offered elsewhere in the University. it is recommended that these modules should be SOR1020 and SOR1021.

At Stage 2 Students must chose six Level 2 modules from those offered in Applied Mathematics, Pure mathematics and SOR. The choice must include AMA2008, PMA2002 and PMA2020.

At Stage 3 Students must take six Level 3 modules from those offered in Applied Mathematics, Pure mathematics and SOR. The choice must include PMA3008 and either PMA3013 or AMA3011.