Credits
20
Environmental Engineers work at the interface between the Natural and the Built Environment. Environmental Engineering deals with the Impacts of the Built Environment and Human Activities on the Natural Environment and vice versa.
The Programme provides the Technical Understanding of these Interactions across the Engineering and Environmental Sciences and develops your Practical Skills to Characterise and Monitor these key Processes and to find Solutions to address these Challenges.
In doing so, Environmental Engineering is key to supporting the UN Sustainable Development Goals and to finding and implementing Solutions to Mitigate and to Adapt to Climate Change.
Environmental Engineering is a broad discipline which is accessible to those from many different backgrounds. The Programme offers a wide variety of elective modules across Environmental Engineering to suit your particular interests.
The Programme provides the opportunities for a career in the environmental, consultancy, regulatory, management, and engineering industry at home or abroad.
PLEASE NOTE:
Applications for this course received after 16th August 2025 may not be accepted. In addition, if not funded by DfE a deposit will be required to secure a place
The programme focuses on active, collaborative and problem-based learning including field and laboratory practicals to develop a comprehensive understanding of key processes and practical skill sets for a successful professional career.
Teaching Staff at the School of Natural and Built Environment maintain close links to industry partners and governmental agencies across the field of Environmental Engineering.
Individual modules on the programme include field trips and site visits in collaboration with industry partners.
Queen’s is ranked 24th in the UK for Engineering with 96% of our research rated as world-leading or internationally excellent. (REF 2021/ Times Higher Education).
You will be taught by staff with an active research portfolio of international standing, with a wide range of interests across the Environmental Engineering Discipline.
NEXT
Course content
The PostGraduate Certificate is awarded to students who successfully complete the taught element of the programme in a combination of Compulsory Core Modules (60 CATS points)
Typically part-time students complete 60 CATS points worth of modules over the year.
All modules for2025/26 are currently under review and subject to change in advance of the programme commencing in September 2025
Land & Water Quality (20 CATS)
Engineering Hydrology & Hydrogeology (20 CATS)
Assessment of Environmental Impacts (20 CATS)
Sustainability Management (20 CATS)
0 (hours maximum)
Lectures: Typically 4 hours per week depending on individual choice of Elective Modules. Tutorials: Typically 4 hours per week depending on individual choice of Elective Modules
The programme is delivered as a combination of lectures, tutorials, site visits and field/laboratory practicals as well as individual and group-based self-directed study.
-
Assessments associated with the course are outlined below:
The information provided in this Course Finder reflects the module details for the current year of study (2025/26). Please note that modules are subject to annual review and changes may occur in response to various factors, including student feedback and academic developments. Prospective students will be notified of any significant changes to module offerings before the start of the new academic year.
The course provides an introduction of the principles of surface and groundwater flow and its implications on the management of water as a natural resource. It develops the basic concepts necessary for understanding surface & groundwater behaviour and their mathematic expression. The course content includes: key elements of the hydrological cycle, hydrometry, urban hydrology & flooding, nature of groundwater bodies, key processes and parameters governing groundwater flow, groundwater monitoring and hydrogeological site characterisation.
On completion of the course, you should have:
• A broad recognition of the key concepts related to surface & groundwater flow and water management;
• An understanding of how surface & groundwater behaves in the wider environment and how it impacts both natural processes and human activity;
• An understanding of the legislative framework for protecting and improving the quality of water;
• An understanding of sampling/monitoring strategies for groundwater & surface water;
• An understanding of tools for assessing quality of "natural" waters;
• An understanding of key physical parameters which affect "natural" waters;
• An understanding of the principles of water chemistry and geochemistry and the chemical composition of water bodies;
• Begun to understand and identify characteristics of key hydrogeological environments;
• Begun to understand and apply/identify key concepts of groundwater management;
• Begun to identify principle remediation strategies for contaminated groundwater.
On completion of the course, you should be able to:
• Conceptualise surface & groundwater flow mechanisms;
• Identify the significance of surface and groundwater and their interaction on a catchment scale
• Transfer and apply basic principles underlying surface water flow and groundwater flow to real life examples
• Assess key aspects of groundwater quality and hydrogeolocial environments;
• Evaluate the results of basic hydraulic/hydrometric monitoring and hydraulic tests with regard to surface and groundwater flow dynamics and hydrogeological properties and environments.
On completion of the module, you should have a broad recognition of the key concepts related to surface water and groundwater flow and water management. The module is furthermore aimed at developing your practical skills in applying key concepts and analysis techniques to real life case study examples and to allow you to formulate the results of hydrological monitoring and hydrogeological investigations and assessments in the form of technical reports.
The module is aimed to enhance the following skills:
• Independent learning - transfer of theoretical concepts to problem-based applications and real life examples;
• Problem based and project-orientated group work;
• Technical report writing.
20
CIV7048
12 weeks
Over the course of the 1-semester module (12 weeks), the module will cover the following key elements:
Introduction to Environmental, social, and corporate governance (ESG)
What is ESG / Relevance to making financial decisions
Describe key environmental, social, and governance issues
Explain how stakeholders influence corporate ESG performance
Analyze ESG risks and opportunities
Assess ESG company performance using publicly available information
Introduction to Green Economy
Concepts in measuring Green Economy Progress (GEP)
The Green Economy Progress Measurement Framework methodology
Global application of the GEP Measurement Framework
Sustainable Finance in Context
Describes the role that sustainable finance can play in delivering global goals on climate change and development.
What is Sustainable Finance?
Financing International Agreements on Climate Change and Sustainable Development
Describe the broad concept of sustainable finance.
Explain the potential contribution that sustainable finance can make to achieving the Sustainable Development Goals and the goals of the Paris Agreement on Climate Change
Fundamentals of Sustainable Finance
Explains the core concepts of sustainable finance and the relevance of sustainability to finance sector decision-makers.
SF: Key Actors
SF & Environmental, Social and Governance (ESG) Risk Management
Financial and Sustainability (Impact) Reporting and Communication
The Task Force on Climate-related Financial Disclosures (TCFD)
Explain why finance sector actors are interested in sustainability-related issues.
Describe the main actors and organisations in the finance system.
Describe the different approaches that investors, banks and insurers can use to take account of sustainability-related issues in their decisions.
Explain how finance sector actors report on the financial and sustainability impacts of their decisions
Examples of Sustainable Finance taxonomies
Taxonomies in practice: the EU and China
Principles of taxonomy development
Taxonomy development principles in practice: South Africa and Colombia
Sustainable Finance as Driver for Environmental Engineering Practice
Evaluates the role of Environmental Engineering Practice within Sustainable Finance Frameworks
Environmental Aspects of Sustainable Finance Frameworks & Regulations
Bridging the Gap between Finance – Industry - Environmental sectors in Assessment & Reporting
Explain the role of environmental/technical criteria within Sustainable Finance Frameworks
Apply Environmental Engineering expertise in the sustainability assessment of individual industry sectors/economic activities
Sustainable Finance Products
Describes some of the products, such as bonds and loans, that may be available to provide the capital needed to support the delivery of the Sustainable Development Goals and the goals of the Paris Agreement on Climate Change
Overview of Sustainable Finance Strategies and Products: An Overview
Green Bonds / Green Loans
Performance-based Instruments
On completion of the course, you should have:
A broad recognition of the key concepts related to Environmental, Social and Corporate Governance
An introductory understanding of Green Economy concepts and frameworks for measuring green economy progress
An understanding of the role of Sustainable Finance (SF) in delivering global goals on climate change and development
Begun to identify the core concepts of Sustainable Finance and associated corporate reporting/disclosures
An introductory understanding of current examples of Sustainable Finance taxonomies and their environmental/technical screening criteria
An understanding of the role of Environmental Engineering Practice within Sustainable Finance frameworks and corporate reporting
Begun to understand examples of Sustainable Finance products and how Environmental Engineering relates to these
On completion of the course, you should be able to:
Broadly analyse the ESG and Sustainability performance of companies using publicly available information
Apply technical Environmental Engineering expertise as part of ESG and SF frameworks and company reporting/disclosures
On completion of the module, you should have a broad recognition of the key concepts related to Environmental, Social and Corporate Governance and Sustainable Finance Frameworks and how Environmental Engineering Practise contributes to these. The module is furthermore aimed at developing your practical skills in applying these key concepts in combination with technical environmental engineering skills to real life case study examples, to allow you to assess the performance of companies with regard to ESG and SF taxonomies and to demonstrate the contributions of your technical Environmental Engineering skills to company reporting/disclosures.
The module is aimed to enhance the following skills:
Independent learning - transfer of theoretical concepts to problem-based applications and real life examples;
Problem based and project-orientated group work;
Technical multi-disciplinary report writing and presentations.
20
CIV7022
12 weeks
This module aims to introduce students to how the impacts of engineering projects are assessed within the framework Life Cycle Assessment, Environmental Impact Assessment and sustainability evaluations. Particular emphasis is given to environmental impacts, although societal impacts will also be considered.
Students will be introduced to the regulatory drivers for Environmental Impact Assessment/Strategic Environmental Assessment and will receive lectures on the stages of Environmental Impact Assessment for major developments. The use of sustainability assessments (CEEQUAL, BREAM etc) will also be explored. Students will be introduced to current standards and guidance for quantifying environmental impacts through Life Cycle Assessment (LCA), including defining the scope of an LCA, inventory analysis and interpretation of results. Case studies will explore how life cycle approaches are employed in industry (resource management, low carbon construction, carbon/energy/water foot printing and the circular economy). Finally students will examine multi criteria analysis for evaluating and balancing diverse criteria during decision making.
Solid waste and resource management will then be studied in detail within this context. Students will gain an understanding of the science and technology behind advanced waste management processes and an appreciation of the financial, social and institutional factors that may restrict the adoption of particular technologies.
By the end of this module, the student should have knowledge and understanding of:
• the regulatory drivers for Environmental Impact Assessment/Strategic Environmental Assessment
• the current standards and guidance for quantifying environmental impacts through Life Cycle Assessment (LCA)
• relevant legislation relating to different waste management scenarios
• how to evaluate the impacts of various waste streams on the social and environmental locale
• how to define the waste hierarchy and concept of zero waste
• how to critically evaluate and communicate succinctly the relationship between wastes management and sustainable development
• regional waste strategies and demonstrate their links to land use planning
• the various stakeholders in the waste management decision making process
By the end of this module, the student should be able to:
• define the scope of an LCA and undertake inventory analysis
• understand how life cycle approaches are employed in industry through resource management, low carbon construction and carbon/energy/water foot printing
• define the need to, and difficulty of, balancing diverse criteria during decision making processes
• make cases for the adoption of a particular waste technology or combination of waste technologies (options appraisal)
• identify technical, financial and social risks associated with different waste management technologies
By the end of this module, the student should be able to:
• apply the stages of Environmental Impact Assessment to prepare and Environmental Impact Statement
• use sustainability assessments (CEEQUAL, BREAM etc) for construction projects
• interpret the results of a life cycle assessment
• undertake an options appraisal using MCA
• critically evaluate scientific and trade literature relating to advanced waste management technologies
• identify potential barriers to the implementation of particular technologies (e.g. waste) at particular locations
• make technical appraisals of proposed new waste projects/processes
• evaluate the environmental impacts of waste management.
The key skills developed by taking this module include:
• Independent learning
• Project-orientated group work
• The ability to propose, assess and evaluate solutions based on both qualitative and quantitative technical data
• Decision making based on multiple sources of information
• The ability to critically evaluate and communicate succinctly relationships between disciplines
• Applying key theoretical concepts and analysis techniques to real life case study examples, allowing students to formulate the results of conceptual assessments in the form of clear, concise and coherent technical reports and oral presentations
20
CIV7059
12 weeks
The purpose of the course is to develop an introduction to the theoretical and practical strategies used for assessing and managing the quality of soils and water. This module will start with an introduction to risk assessment and management using a tiered approach, including a discussion of the source-pathway-receptor model that will subsequently be applied to assessing and managing water and land contamination.
The land quality aspect of the course will consider the regulatory drivers for assessing and managing contaminated land and provide an overview of the UK approach (CLR11) for assessing and managing land contamination. Students will learn how to identify and connect potential contaminants of concern, receptors that may be at risk and pathways within a conceptual model of the site during the preliminary qualitative risk assessment. They will study how these linkages are refined through the stages of qualitative risk assessment (generic and detailed) and remediation options appraisal and implementation. This will include an introduction to how quantitative data is collected at the site (representative sampling strategies and laboratory analysis), an overview of remediation technologies and how they can be compared and assessed, and an introduction to verification and validation of land remediation.
The water quality aspect of the module will consider an introduction to groundwater chemistry and the key processes underlying the fate and transport of contaminants in the water environment.
On completion of the course you should:
• Have knowledge and understanding of the legislative framework for protecting and improving the quality of land and water.
• Have knowledge and understanding of site walk over surveys and sampling/monitoring strategies for soil and soil gas.
• Have understanding of the application and derivation of Generic Assessment Criteria and other tools for assessing quality of soils and groundwater.
• Have understanding of the implementation of options appraisal using sustainability metrics, remediation strategies, and plans for contaminated soils and groundwater.
• Have knowledge and understanding of the verification of remediation of soils and groundwater.
• Have knowledge and understanding of key principles of groundwater chemistry.
• Have knowledge and understanding of main processes governing the fate & transport of contaminants in the water environment.
• Apply the Source, Pathway, Receptor model and pollutant linkages for contaminated land to synthesize preliminary risk assessments in the form of desk studies.
• Define, apply and formulate conceptual models.
• Create decision records arising from preliminary risk assessments.
• Apply decisions from preliminary risk assessments to designing both non intrusive and intrusive methods of site investigations as well as to assessing health and safety considerations.
• Apply, formulate, create and interrogate Detailed Quantitative Risk Assessments.
• Undertake options appraisals of risk management solutions.
• Identify key chemical properties of groundwater systems and rock-water interactions.
• Identify key processes underlying contaminant fate & transport in the water environment.
On completion of the course you should be able to:
• Create and evaluate qualitative and quantitative conceptual models for contaminated land.
• Perform preliminary risk assessments to a standard required by a regulator.
• Use the outcomes of preliminary risk assessments to undertake decision making relating to health and safety risks and the requirement for further investigations/remediation.
• Apply conceptual models to develop sampling strategies for contaminated land.
• Perform basic detailed quantitative risk assessments.
• Correctly apply, interrogate and make decisions based on industry standard risk assessment models.
• Evaluate remediation options and make decisions on remediation strategies.
• Evaluate hydrochemical data in the context of varying groundwater environments.
You will also be able to demonstrate the following:
• The ability to learn independently.
• The ability to solve non-routine problems.
• The ability to solve some general problems through systematic analysis.
• Technical report writing.
• Evaluate critically scientific and trade literature.
20
CIV7040
12 weeks
PREV
Course content
NEXT
Entry requirements
Normally a 2.2 Honours degree or above or equivalent qualification acceptable to the University in a relevant Engineering/Science discipline, e.g. Civil Engineering. Applicants must also demonstrate sufficient mathematical background (a minimum of A-level standard or equivalent) however undergraduate courses with a high mathematical content, e.g. Statistics, will be considered on a case-by case-basis.
A 2.1 Honours degree or above, or equivalent qualification acceptable to the University, is required for those with an insufficient mathematical background.
Applicants with qualifications below 2.2 Honours degree standard (or equivalent qualification acceptable to the University) will be considered on a case-by case-basis.
Professional Qualifications may be considered alongside extensive relevant professional experience.
A limited number of fully funded places (provided by the Department for the Economy) are available for this programme. Where there are more eligible applications received than places available, the academic selectors for this programme will make offers in rank order based on academic merit and potential as evidenced in the totality of the information provided in each application. We will operate a waiting list as required to allow us to fill all available funded places. If you have not been selected for a funded place, we will accept self-funded or employer-funded applicants, if spaces are available.
If you have already applied for this course but did not know about the funded places available, your original application will still be considered equally for a funded place. We will contact you if this applies to you.
Further information is available at the link below.
Closing date for applications is Friday 22nd August 2025 at 12 noon. However, we encourage applicants to apply as early as possible. In the event that any programme receives a high number of applications, the University reserves the right to close the application portal earlier than the deadline. Notifications to this effect will appear on the portal against the programme application page.
https://www.qub.ac.uk/Study/skill-up-flexible-skills-fund/
Our country/region pages include information on entry requirements, tuition fees, scholarships, student profiles, upcoming events and contacts for your country/region. Use the dropdown list below for specific information for your country/region.
Evidence of an IELTS* score of 6.5, with not less than 5.5 in any component, or an equivalent qualification acceptable to the University is required (*taken within the last 2 years).
International students wishing to apply to Queen's University Belfast (and for whom English is not their first language), must be able to demonstrate their proficiency in English in order to benefit fully from their course of study or research. Non-EEA nationals must also satisfy UK Visas and Immigration (UKVI) immigration requirements for English language for visa purposes.
For more information on English Language requirements for EEA and non-EEA nationals see: www.qub.ac.uk/EnglishLanguageReqs.
If you need to improve your English language skills before you enter this degree programme, Queen's University Belfast International Study Centre offers a range of English language courses. These intensive and flexible courses are designed to improve your English ability for admission to this degree.
Environmental Engineers are in high demand. The challenges of Sustainable Development, Decarbonisation and Climate Change Adaptation require technical competencies alongside practical skills to find and implement solutions to these challenges. The programme provides its graduates with the relevant competencies and skills for successful careers in environmental engineering, monitoring, management and consultancy, and establishes a basis for interdisciplinary research studies.
Over the past two decades, the programme has developed a strong recognition with employers in industry, governmental agencies and academia with many of our past graduates having become Senior Industry Leaders and actively recruiting from the programme. Past graduates have found employment with a wide range of employers, eg environment regulatory agencies, civil engineering and specialist contractors as well as engineering and environmental consultancies in the UK, Ireland and abroad.
Queen's postgraduates reap exceptional benefits. Unique initiatives, such as Degree Plus and Researcher Plus bolster our commitment to employability, while innovative leadership and executive programmes alongside sterling integration with business experts helps our students gain key leadership positions both nationally and internationally.
http://www.qub.ac.uk/directorates/sgc/careers/
In addition to your degree programme, at Queen's you can have the opportunity to gain wider life, academic and employability skills. For example, placements, voluntary work, clubs, societies, sports and lots more. So not only do you graduate with a degree recognised from a world leading university, you'll have practical national and international experience plus a wider exposure to life overall. We call this Graduate Plus/Future Ready Award. It's what makes studying at Queen's University Belfast special.
PREV
Entry Requirements
NEXT
Fees and Funding
Northern Ireland (NI) 1 | DfE Funded students: Free / Other students: £2,434 |
Republic of Ireland (ROI) 2 | £2,434 |
England, Scotland or Wales (GB) 1 | £3,083 |
EU Other 3 | £8,600 |
International | £8,600 |
1EU citizens in the EU Settlement Scheme, with settled status, will be charged the NI or GB tuition fee based on where they are ordinarily resident. Students who are ROI nationals resident in GB will be charged the GB fee.
2 EU students who are ROI nationals resident in ROI are eligible for NI tuition fees.
3 EU Other students (excludes Republic of Ireland nationals living in GB, NI or ROI) are charged tuition fees in line with international fees.
All tuition fees quoted relate to a single year of study unless stated otherwise. Tuition fees will be subject to an annual inflationary increase, unless explicitly stated otherwise.
More information on postgraduate tuition fees.
Students are expected to supply their own waterproof clothing and sturdy footwear to participate in field-based activities, where applicable. Students who choose to undertake their MSc research project in collaboration with external organisation may be required to undertake an Enhanced Disclosure Check with Access NI costing £33.
Terms and Conditions for Postgraduate applications
1.1 Due to high demand, there is a deadline for applications.
1.2 You will be required to pay a deposit to secure your place on the course.
1.3 This condition of offer is in addition to any academic or English language requirements.
Read the full terms and conditions at the link below:
https://www.qub.ac.uk/Study/EPS/terms-and-conditions/
Depending on the programme of study, there may be extra costs which are not covered by tuition fees, which students will need to consider when planning their studies.
Students can borrow books and access online learning resources from any Queen's library. If students wish to purchase recommended texts, rather than borrow them from the University Library, prices per text can range from £30 to £100. Students should also budget between £30 to £75 per year for photocopying, memory sticks and printing charges.
Students undertaking a period of work placement or study abroad, as either a compulsory or optional part of their programme, should be aware that they will have to fund additional travel and living costs.
If a programme includes a major project or dissertation, there may be costs associated with transport, accommodation and/or materials. The amount will depend on the project chosen. There may also be additional costs for printing and binding.
Students may wish to consider purchasing an electronic device; costs will vary depending on the specification of the model chosen.
There are also additional charges for graduation ceremonies, examination resits and library fines.
The Department for the Economy will provide a tuition fee loan of up to £6,500 per NI / EU student for postgraduate study. Tuition fee loan information.
A postgraduate loans system in the UK offers government-backed student loans of up to £11,836 for taught and research Masters courses in all subject areas (excluding Initial Teacher Education/PGCE, where undergraduate student finance is available). Criteria, eligibility, repayment and application information are available on the UK government website.
More information on funding options and financial assistance - please check this link regularly, even after you have submitted an application, as new scholarships may become available to you.
Information on scholarships for international students, is available at www.qub.ac.uk/Study/international-students/international-scholarships.
Apply using our online Queen's Portal and follow the step-by-step instructions on how to apply.
The terms and conditions that apply when you accept an offer of a place at the University on a taught programme of study.
Queen's University Belfast Terms and Conditions.
PREV
Fees and Funding